J. Mater. Sci. Technol. ›› 2022, Vol. 116: 224-237.DOI: 10.1016/j.jmst.2021.11.042
• Review Article • Previous Articles Next Articles
Inime Ime Udoha,b, Hongwei Shia,*, Enobong Felix Daniela,c, Jianyang Lia,c, Songhua Gua,c, Fuchun Liua, En-Hou Hana
Received:
2021-08-12
Revised:
2021-11-10
Accepted:
2021-11-29
Published:
2022-01-01
Online:
2022-07-26
Contact:
Hongwei Shi
About author:
∗Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies[J]. J. Mater. Sci. Technol., 2022, 116: 224-237.
Fig. 1. Schematic representation of three ways of achieving self-healing at defect site. (a) Polymer network of the coating itself fills up the defect site and restores coating barrier, (b) reactive monomers released from microcapsules polymerize and seal up defect site, and (c) released corrosion inhibitors from preloaded nano-/micro-containers passivate the metal surface.
Fig. 2. Images of coating after immersion in 0.1 M NaCl solution for 20 days: blank coating (a), coatings with MSNs (b), MSNs-BTA (c), and MSNs-BTA@PDA (d). Adapted with permission from [49] (https://pubs.acs.org/doi/10.1021/acsami.8b21197), Copyright (2019), American Chemical Society.
Nano/microcontainers | Active substance | Assessment method (s) | Ref. |
---|---|---|---|
Zeolitic imidazolate | polyethylene glycol-tannic acid complex | EIS | [ |
Halloysite nanotubes | imidazole, dodecylamine | EIS | [ |
Graphene oxide nanoplatform | Tamarindus indiaca extract, Zn2+ | EIS, FE-SEM, SST | [ |
Mesoporous silica nanoparticles | benzotriazole, benzalkonium chloride | SVET, EIS | [ |
Silica nanocapsules | 2-mercaptobenzothiazole | EIS | [ |
Dendrimer-like mesoporous silica nanocontainer | 8- hydroxyquinoline | EIS, SVET, SFIM | [ |
Zeolitic imidazolate framework-8 | benzotriazole, tannic acid | EIS | [ |
Ceria nanoparticles | Zirconium | Tafel polarization, EIS | [ |
Poly(urea-formaldehyde)-based microcapsules | oleyl phosphate | UV irradiation, SEM, PDP, EIS | [ |
Poly methyl methacrylate nanocapsules | triethanolamine | OM, SEM, EIS | [ |
Polydopamine modified mesoporous silica/graphene oxide, | benzotriazole | EIS, SEM | [ |
Graphene/halloysite nanotubes | L-histidine | EIS | [ |
Phenylene-bridged hollow periodic mesoporous organosilica | 2-Mercaptobenzothiazole | EIS, PDP, SEM, AFM, MD | [ |
Metal organic frameworks | tetraethyl orthosilicate, graphene oxide, benzotriazole | EIS | [ |
Graphene | carbon dot | EIS, SVET, LSCM, SEM, XPS | [ |
Zn-Al layered double hydroxides | Nitrates | XRD, IC | [ |
Hollow carbon spheres | Zn2+ | FESEM, ICP-OES, EIS, PDP | [ |
Nano-ZrO2, | tannic acid, d-limonene | Raman, SEM, EIS | [ |
Mesoporous silica nanoparticles | 1,10-phenanthroline, Chitosan-sodium tripolyphosphate | SEM, EIS, LEIS | [ |
Mesoporous silica core@layered double hydroxide | 2-mercaptobenzothiazole | EIS, visual observation | [ |
Layered double hydroxide | N-alkyl-N, N-dimethyl-N-(3-thienylmethylene) ammonium bromides | PDP, DFT | [ |
Table 1. Summary of nano/microcontainers, active substances and assessment methods in active anticorrosion coatings.
Nano/microcontainers | Active substance | Assessment method (s) | Ref. |
---|---|---|---|
Zeolitic imidazolate | polyethylene glycol-tannic acid complex | EIS | [ |
Halloysite nanotubes | imidazole, dodecylamine | EIS | [ |
Graphene oxide nanoplatform | Tamarindus indiaca extract, Zn2+ | EIS, FE-SEM, SST | [ |
Mesoporous silica nanoparticles | benzotriazole, benzalkonium chloride | SVET, EIS | [ |
Silica nanocapsules | 2-mercaptobenzothiazole | EIS | [ |
Dendrimer-like mesoporous silica nanocontainer | 8- hydroxyquinoline | EIS, SVET, SFIM | [ |
Zeolitic imidazolate framework-8 | benzotriazole, tannic acid | EIS | [ |
Ceria nanoparticles | Zirconium | Tafel polarization, EIS | [ |
Poly(urea-formaldehyde)-based microcapsules | oleyl phosphate | UV irradiation, SEM, PDP, EIS | [ |
Poly methyl methacrylate nanocapsules | triethanolamine | OM, SEM, EIS | [ |
Polydopamine modified mesoporous silica/graphene oxide, | benzotriazole | EIS, SEM | [ |
Graphene/halloysite nanotubes | L-histidine | EIS | [ |
Phenylene-bridged hollow periodic mesoporous organosilica | 2-Mercaptobenzothiazole | EIS, PDP, SEM, AFM, MD | [ |
Metal organic frameworks | tetraethyl orthosilicate, graphene oxide, benzotriazole | EIS | [ |
Graphene | carbon dot | EIS, SVET, LSCM, SEM, XPS | [ |
Zn-Al layered double hydroxides | Nitrates | XRD, IC | [ |
Hollow carbon spheres | Zn2+ | FESEM, ICP-OES, EIS, PDP | [ |
Nano-ZrO2, | tannic acid, d-limonene | Raman, SEM, EIS | [ |
Mesoporous silica nanoparticles | 1,10-phenanthroline, Chitosan-sodium tripolyphosphate | SEM, EIS, LEIS | [ |
Mesoporous silica core@layered double hydroxide | 2-mercaptobenzothiazole | EIS, visual observation | [ |
Layered double hydroxide | N-alkyl-N, N-dimethyl-N-(3-thienylmethylene) ammonium bromides | PDP, DFT | [ |
Fig. 3. (a) Schematic representation of self-healing after scratch. (b) SEM image of scratched epoxy coating without microcapsules, (c) SEM image of scratched epoxy coating with microcapsules displaying self-healing effect [89].
Fig. 4. Infrared Rays (IR) intensity maps of 1690 cm-1 band of scratched film at specified locations for different healing time: (a) 0 h, (b) 1 h and (c) 2 h. Reprinted from [90], Copyright (2021), with permission from Elsevier.
Defect-filling Materials/Polymers | Assessment method(s) | Ref. |
---|---|---|
Nanofibers (polyacrylonitrile), TA and tung oil | SEM, XPS, Scanning Kelvin Probe (SKP), EIS | [ |
Polycaprolactone microspheres, cerium(III) nitrate | SEM, EIS | [ |
Urea-formaldehyde microcapsules, fluorosilane | SEM, accelerated weathering, EIS, SVET | [ |
Polydopamine, graphene oxide, Zn (II) | SEM, EIS, PDP | [ |
Poly(urea-urethane)-graphitic carbon nitride nanosheet | Transmission electron microscopy (TEM), XRD, AFM, EIS | [ |
Polyurea/polyaniline hybrid shell microcapsules, isophorone diisocyanate | SEM, EIS | [ |
Gelatin-gum Arabic/urea-formaldehyde microcapsules, vinyl ester resin and benzoyl peroxide | SEM, OM, EIS | [ |
Polyaspartamide | SEM, DSC, EIS | [ |
Furan-capped aniline trimer, maleimide compounds | SEM, PDP, EIS | [ |
Coumarin | Accelerated weathering, SEM, TEM | [ |
Polydimethylsiloxane, meldrum's acid | SEM, PDP, EIS | [ |
2,2-azobis(2-methylpropionamidine), dimethylaminoethyl methacrylate, methoxy polyethylene glycol acrylate, acrylic acid | SAXS, OM, load bearing, photoluminescence emission | [ |
Lignin nanoparticle, isophorone diisocyanate | OM, SEM, EIS | [ |
Polydopamine, 2-hydroxypropyltrimethyl ammonium chloride, chitosan, sodium alginate, Ca2+ | FESEM, EIS | [ |
Polyurea/poly(urea-formaldehyde)/Al2O3 hybrid microcapsules, 4,4′-methylenebis cyclohexyl isocyanate | SEM, XPS | [ |
1h,1h,2h,2h-perfluorooctyl triethoxysilane | SEM, EIS | [ |
Sulfate-doped polyaniline | SEM, SVET, EIS, salt spray | [ |
Tolylene 2,4-diisocynate terminated polypropylene glycol, 1-(3-aminopropyl) imidazole, trimethylolpro-pane tris[poly(propylene glycol), | SEM, STEM, Raman, XPS, OM, SVET | [ |
Table 2. Summary of defect-filling materials and assessment methods in self-healing coatings.
Defect-filling Materials/Polymers | Assessment method(s) | Ref. |
---|---|---|
Nanofibers (polyacrylonitrile), TA and tung oil | SEM, XPS, Scanning Kelvin Probe (SKP), EIS | [ |
Polycaprolactone microspheres, cerium(III) nitrate | SEM, EIS | [ |
Urea-formaldehyde microcapsules, fluorosilane | SEM, accelerated weathering, EIS, SVET | [ |
Polydopamine, graphene oxide, Zn (II) | SEM, EIS, PDP | [ |
Poly(urea-urethane)-graphitic carbon nitride nanosheet | Transmission electron microscopy (TEM), XRD, AFM, EIS | [ |
Polyurea/polyaniline hybrid shell microcapsules, isophorone diisocyanate | SEM, EIS | [ |
Gelatin-gum Arabic/urea-formaldehyde microcapsules, vinyl ester resin and benzoyl peroxide | SEM, OM, EIS | [ |
Polyaspartamide | SEM, DSC, EIS | [ |
Furan-capped aniline trimer, maleimide compounds | SEM, PDP, EIS | [ |
Coumarin | Accelerated weathering, SEM, TEM | [ |
Polydimethylsiloxane, meldrum's acid | SEM, PDP, EIS | [ |
2,2-azobis(2-methylpropionamidine), dimethylaminoethyl methacrylate, methoxy polyethylene glycol acrylate, acrylic acid | SAXS, OM, load bearing, photoluminescence emission | [ |
Lignin nanoparticle, isophorone diisocyanate | OM, SEM, EIS | [ |
Polydopamine, 2-hydroxypropyltrimethyl ammonium chloride, chitosan, sodium alginate, Ca2+ | FESEM, EIS | [ |
Polyurea/poly(urea-formaldehyde)/Al2O3 hybrid microcapsules, 4,4′-methylenebis cyclohexyl isocyanate | SEM, XPS | [ |
1h,1h,2h,2h-perfluorooctyl triethoxysilane | SEM, EIS | [ |
Sulfate-doped polyaniline | SEM, SVET, EIS, salt spray | [ |
Tolylene 2,4-diisocynate terminated polypropylene glycol, 1-(3-aminopropyl) imidazole, trimethylolpro-pane tris[poly(propylene glycol), | SEM, STEM, Raman, XPS, OM, SVET | [ |
Fig. 5. Schematic illustration of (a) inhibitor release from a pH responsive microcontainer with polyelectrolyte shell; (b) inhibitor release after mechanical rupture; (c) porous structure showing time-dependent release; and (d) inhibitor release by ion-exchange mechanism in the presence of aggressive ions.
Fig. 6. (a) Ratio between the maximum admittance values determined at the defect at certain time (A) and the initial maximum admittance values (A0) for each coated sample (Coat-I and Coat-II) during immersion in 0.005 mol L-1 NaCl. Inset: Coat-I (magnified scale). (b, c) SEM images and EDS analysis of Coat-I and Coat-II obtained after LEIS measurements performed in 0.005 mol L-1 NaCl for 24 h. Reprinted from [134], Copyright (2020), with permission from Elsevier.
Fig. 8. (a) Scheme of multifunctional Pickering emulsions and their response to mechanical damage or pH change; Investigation of self-healing performance of the coatings (b) Optical images of the acrylate coating, acrylate coatings containing 45 wt.% soybean oil or linseed oil Pickering droplets before and after scratching the coating. Adapted with permission from [153] (https://pubs.acs.org/doi/10.1021/acsami.0c11866), Copyright (2020), American Chemical Society.
Fig. 9. Schematic representation of preparation of (A) FcCA-Cys and (B) TSR-SNs. (C) Construction route of TSR-SN-based SF-SHAC. Adapted with permission from [154], Copyright (2019), American Chemical Society.
Fig. 10. Optical micrograph (a) and SVET current density maps of (A) coating I, (B) coating II, and (C) coating III for immersion of 4 (b), 30 (c), 60 (d) h, and (e) maximum anodic and cathodic current densities over the defect area during monitoring time of 150 h in 0.05 M NaCl solution. Adapted with permission from [154], Copyright (2019), American Chemical Society.
Fig. 11. (a) Impedance values for specimens measured around the defect (Y = 2.5 mm) and (b) Raman spectrum of the scratched coatings after 20 h of immersion; (c) optical micrographs of steel electrodes beneath the coating after LEIS test: (c1) pure EP, (c2) rGO-CD/EP, and (c3) rGO-CD-BTA/EP coatings. Adapted with permission from [155], Copyright (2018), American Chemical Society.
Fig. 12. Schematic representation of self-healing mechanism for graphene-based containers composite coatings. Adapted with permission from [155], Copyright (2018), American Chemical Society.
Fig. 13. SEM image and EDS mapping image of CP-SFAC sample (A) before immersion, (B) after immersion in 0.05 M NaCl solution for 24 h; SEM image and EDS mapping image of the control coating sample (C) before immersion, (D) after immersion in 0.05 M NaCl solution for 24 h. Adapted with permission from [156], Copyright (2017), American Chemical Society.
Fig. 14. Schematic representation of corrosion protection mechanism of (A) CP-SFAC, and (B) CP-SFAC-RD(random distribution of CP-SNCs within CP-SFAC); (C) corrosion potential induced process of 8-HQ from CP-SNCs. CP-SNCs close to the surface of AZ31B can quickly accept the electrons generated from dissolution of magnesium, while CP-SNCs far from the surface of AZ31B cannot accept the electrons. Adapted with permission from [156], Copyright (2017), American Chemical Society.
[1] | J. Baghdachi, T. Provder, J. Baghdachi, in:Proceedings of the ACS Symposium Series 1002, Washington, DC, American Chemical Society, 2009, pp. 3-24. |
[2] | R.F. Brady, T. Provder, J. Baghdachi, Baghdachi, in:Proceedings of the ACS Symposium Series 957, Washington, DC, American Chemical Society, 2007, pp. 3-14. |
[3] |
T. Hu, Y. Ouyang, Z. Xie, L. Wu, J. Mater. Sci. Technol. 92 (2021) 225-235.
DOI URL |
[4] |
A. Nazeer, M. Madkour, J. Mol. Liq. 253 (2018) 11-22.
DOI URL |
[5] |
R. del Olmo, U. Tiringer, I. Milošev, P. Visser, R. Arrabal, E. Matykina, J.M.C. Mol, Surf. Coat. Technol. 419 (2021) 127251.
DOI URL |
[6] |
S.J. García, H.R. Fischer, S.V.D. Zwaag, Prog. Org. Coat. 72 (2011) 211-221.
DOI URL |
[7] | M.A. Zadeh, S.V.D. Zwaag, S.J. Garcia, Self Heal. Mater. 1 (2013) 1-18. |
[8] |
S.J. Garcia, Eur. Polym. J. 53 (2014) 118-125.
DOI URL |
[9] |
S. Nevejans, N. Ballard, M. Fernández, B. Reck, J. Asua, Polymer 166 (2019) 229-238 (Guildf).
DOI |
[10] | D. Zhao, S. Liu, Y. Wu, T. Guan, N. Sun, B. Ren, Prog. Org. Coat. 133 (2019) 289-298. |
[11] | C. Zhang, H. Wang, Q. Zhou, Prog. Org. Coat. 125 (2018) 403-410. |
[12] |
W. Fan, Y. Zhang, W. Li, W. Wang, X. Zhao, L. Song, Chem. Eng. J. 368 (2019) 1033-1044.
DOI URL |
[13] |
M. Samadzadeh, S. Boura, M. Peikari, S. Kasir- iha, A. Ashrafi, Prog. Org. Coat. 68 (2010) 159-164.
DOI URL |
[14] |
M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Möhwald, M.G.S. Ferreira, Chem. Mater. 19 (2007) 402-411.
DOI URL |
[15] |
D.G. Shchukin, H. Möhwald, Small 3 (2007) 926-943.
PMID |
[16] |
H. Shi, L. Wu, J. Wang, F. Liu, E.H. Han, Corros. Sci. 127 (2017) 230-239.
DOI URL |
[17] |
D.G. Shchukin, H. Möhwald, Adv. Funct. Mater. 17 (2007) 1451-1458.
DOI URL |
[18] |
E.V. Skorb, D. Fix, D.V. Andreeva, H. Möhwald, D.G. Shchukin, Adv. Funct. Mater. 19 (2009) 2373-2379.
DOI URL |
[19] |
H. Shi, F. Liu, E.H. Han, J. Mater. Sci. Technol. 31 (2015) 512-516.
DOI URL |
[20] | T. Hu, H. Shi, S. Fan, F. Liu, E.H. Han, Prog. Org. Coat. 105 (2017) 123-131. |
[21] |
Y.B. Chong, D. Sun, X. Zhang, C.Y. Yue, J. Yang, Chem. Eng. J. 372 (2019) 496-508.
DOI |
[22] | B. Qian, M. Michailidis, M. Bilton, T. Hobson, Z. Zheng, D. Shchukin, Elec- trochim. Acta 297 (2019) 1035-1041. |
[23] |
X. Liu, H. He, T.C. Zhang, L.O. yang, Y.X. Zhang, S. Yuan, Chem. Eng. J. 404 (2021) 127106.
DOI URL |
[24] |
Y. Lin, R. Chen, Y. Zhang, Z. Lin, Q. Liu, J. Liu, Y. Wang, L. Gao, J. Wang, Chem. Eng. J. 383 (2020) 123203.
DOI URL |
[25] |
A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami, Corros. Sci. 94 (2015) 207-217.
DOI URL |
[26] |
T. Stimpfling, F. Leroux, H. Hintze-Bruening, Colloids Surf. 458 (2014) 147-154.
DOI URL |
[27] |
X. Wang, L. Li, Z.H. Xie, G. Yu, Electrochim. Acta 283 (2018) 1845-1857.
DOI URL |
[28] |
L. Xia, R. McCreery, J. Electrochem. Soc. 145 (1998) 3083-3089.
DOI URL |
[29] | K.A. Yasakau, M.G.S. Ferreira, M.L. Zheludkevich, H. Terryn, J.M.C. Mol, Y.G. Garcia, M. Forsyth, B. Hinton, Hinton, in:Rare Earth-Based Corrosion Inhibitors, Woodhead Publishing, 2014, pp. 233-266. |
[30] |
M. Davoodi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Constr. Build. Mater. 243 (2020) 118215.
DOI URL |
[31] |
R. Samiee, B. Ramezanzadeh, M. Mahdavian, E. Alibakhshi, J. Clean. Prod. 220 (2019) 340-356.
DOI |
[32] |
F. Cotting, I.V. Aoki, Surf. Coat. Technol. 303 (2016) 310-318.
DOI URL |
[33] |
P.J. Denissen, S.J. Garcia, Corros. Sci. 128 (2017) 164-175.
DOI URL |
[34] |
J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, M.G.S. Ferreira, ACS Appl. Mater. Interfaces 2 (2010) 1528-1535.
DOI URL |
[35] |
D. Snihirova, S.V. Lamaka, M. Taryba, A.N. Salak, S. Kallip, M.L. Zheludke-vich, M.G.S. Ferreira, M.F. Montemor, ACS Appl. Mater. Interfaces 2 (2010) 3011-3022.
DOI URL |
[36] | A.G. Cordeiro Neto, A.C. Pellanda, A.R. de Carvalho Jorge, J.B. Floriano, M.A. Coelho Berton, Prog. Org. Coat. 147 (2020) 105874. |
[37] |
S. Asaldoust, B. Ramezanzadeh, J. Colloid Interface Sci. 564 (2020) 230-244.
DOI URL |
[38] |
M. Nawaz, R.A. Shakoor, R. Kahraman, M.F. Montemor, Mater. Des. 198 (2021) 109361.
DOI URL |
[39] |
I.A. Kartsonakis, G. Kordas, J. Am. Ceram. Soc. 93 (2010) 65-73.
DOI URL |
[40] |
D. Borisova, H. Möhwald, D.G. Shchukin, ACS Nano 5 (2011) 1939-1946.
DOI URL |
[41] |
D. Borisova, H. Möhwald, D.G. Shchukin, ACS Appl. Mater. Interfaces 4 (2012) 2931-2939.
DOI URL |
[42] |
D. Fix, D.V. Andreeva, Y.M. Lvov, D.G. Shchukin, H. Möhwald, Adv. Funct. Mater. 19 (2009) 1720-1727.
DOI URL |
[43] |
H.Y. Xu, B. Li, X. Han, Y. Wang, X.R. Zhang, S. Komarneni, J. Appl. Polym. Sci. 136 (2019) 47562.
DOI URL |
[44] |
D. Snihirova, S.V. Lamaka, M.F. Montemor, Electrochim. Acta 83 (2012) 439-447.
DOI URL |
[45] |
I.A. Kartsonakis, E. Athanasopoulou, D. Snihirova, B. Martins, M.A. Koklioti, M.F. Montemor, G. Kordas, C.A. Charitidis, Corros. Sci. 85 (2014) 147-159.
DOI URL |
[46] | S.H. Sonawane, B.A. Bhanvase, A.A. Jamali, S.K. Dubey, S.S. Kale, D.V. Pinjari, R.D. Kulkarni, P.R. Gogate, A.B. Pandit, Chem. Eng. J. 189-190 (2012) 464-472. |
[47] |
Z.H. Xie, D. Li, Z. Skeete, A. Sharma, C.J. Zhong, ACS Appl. Mater. Interfaces 9 (2017) 36247-36260.
DOI URL |
[48] |
Z.H. Xie, S. Shan, J. Mater. Sci. 53 (2018) 3744-3755.
DOI URL |
[49] |
B. Qian, Z. Zheng, M. Michailids, N. Fleck, M. Bilton, Y. Song, G. Li, D. Shchukin, ACS Appl. Mater. Interfaces 11 (2019) 10283-10291.
DOI URL |
[50] |
I.I. Udoh, H. Shi, F. Liu, E.H. Han, Mater. Chem. Phys. 241 (2019) 122404.
DOI URL |
[51] | M. Soleymanibrojeni, H. Shi, I.I. Udoh, F. Liu, E.H. Han, Prog. Org. Coat. 137 (2019) 105336. |
[52] | S. Gu, H. Shi, C. Zhang, W. Wang, F. Liu, E.H. Han, Prog. Org. Coat. 158 (2021) 106376. |
[53] |
C. Liu, B. Qian, P. Hou, Z. Song, ACS Appl. Mater. Interfaces 13 (2021) 4429-4441.
DOI URL |
[54] |
A. Khan, A. Hassanein, S. Habib, M. Nawaz, R.A. Shakoor, R. Kahraman, ACS Appl. Mater. Interfaces 12 (2020) 37571-37584.
DOI URL |
[55] |
S. Akbarzadeh, M. Ramezanzadeh, B. Ramezanzadeh, G. Bahlakeh, J. Hazard. Mater. 390 (2020) 122147.
DOI URL |
[56] |
Z. Zheng, X. Huang, M. Schenderlein, D. Borisova, R. Cao, H. Möhwald, D. Shchukin, Adv. Funct. Mater. 23 (2013) 3307-3314.
DOI URL |
[57] |
F. Maia, J. Tedim, A.D. Lisenkov, A.N. Salak, M.L. Zheludkevich, M.G.S. Ferreira, Nanoscale 4 (2012) 1287-1298.
DOI URL |
[58] | T. Siva, S.S. Sreeja Kumari, S. Sathiyanarayanan, Prog. Org. Coat. 154 (2021) 106201. |
[59] |
C. Yang, W. Xu, X. Meng, X. Shi, L. Shao, X. Zeng, Z. Yang, S. Li, Y. Liu, X. Xia, Chem. Eng. J. 415 (2021) 128985.
DOI URL |
[60] | A. Joseph, K.P. John Mathew, S. Vandana, A.C.S. Appl, Nano Mater. 4 (2021) 834-849. |
[61] |
H.C. Yu, Y.T. Zhang, M.J. Wang, C.C. Li, Langmuir 35 (2019) 7871-7878.
DOI URL |
[62] | C. Kim, A.I. Karayan, J. Milla, M. Hassan, H. Castaneda, ACS Appl. Mater. Inter- faces 12 (2020) 6451-6459. |
[63] |
Y. Ma, H. Huang, H. Zhou, M. Graham, J. Smith, X. Sheng, Y. Chen, L. Zhang, X. Zhang, E. Shchukina, D. Shchukin, J. Mater. Sci. Technol. 95 (2021) 95-104.
DOI URL |
[64] |
Y. Jia, T. Qiu, L. Guo, J. Ye, L. He, X. Li, Appl. Surf. Sci. 504 (2020) 144496.
DOI URL |
[65] |
M. Cheng, Q. Lyu, B. Shan, X. Zhao, Z. Wang, S. Sun, C. Li, S. Hu, Chem. Eng. J. 400 (2020) 125917.
DOI URL |
[66] | K. Cao, Z. Yu, D. Yin, L. Chen, Y. Jiang, L. Zhu, Prog. Org. Coat. 143 (2020) 105629. |
[67] |
Y. Ye, H. Chen, Y. Zou, H. Zhao, J. Mater. Sci. Technol. 67 (2021) 226-236.
DOI URL |
[68] |
J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D. Snihirova, M. Pilz, M.L. Zheludkevich, M.G.S. Ferreira, Corros. Sci. 55 (2012) 1-4.
DOI URL |
[69] | R. Behgam, M. Mahdavian, A. Ramazani, Surf. Interfaces 21 (2020) 100696. |
[70] | J. Chang, Z. Wang, E.-h. Han, X. Liang, G. Wang, Z. Yi, N. Li, J. Mater. Sci. Tech- nol. 65 (2021) 137-150. |
[71] |
C. Liu, Z. Jin, L. Cheng, H. Zhao, L. Wang, Nanoscale 12 (2020) 3194-3204.
DOI URL |
[72] |
Y. Ouyang, L.X. Li, Z.H. Xie, L. Tang, F. Wang, C.J. Zhong, J. Magnes. Alloy. (2020), doi: 10.1016/j.jma.2020.11.007.
DOI |
[73] | L.X. Li, Z.H. Xie, C. Fernandez, L. Wu, D. Cheng, X.H. Jiang, C.J. Zhong, Elec- trochim. Acta 330 (2020) 135186. |
[74] |
E. Koh, N.K. Kim, J. Shin, Y.W. Kim, RSC Adv. 4 (2014) 16214-16223.
DOI URL |
[75] |
S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Adv. Mater. 18 (2006)997-1000.
DOI URL |
[76] |
X. Yang, X. Zhong, J. Zhang, J. Gu, J. Mater. Sci. Technol. 68 (2021) 209-215.
DOI URL |
[77] | D.I. Njoku, B. Li, M.S. Khan, U.P. Chinonso, C.N. Njoku, I.B. Onyeachu, Y. Li, Prog. Org. Coat. 157 (2021) 106312. |
[78] |
N. Kuhl, S. Bode, R.K. Bose, J. Vitz, A. Seifert, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Adv. Funct. Mater. 25 (2015) 3278.
DOI URL |
[79] |
H. Bai, Z. Zhang, Y. Huo, Y. Shen, M. Qin, W. Feng, J. Mater. Sci. Technol. 98 (2022) 169-176.
DOI URL |
[80] | K. Urdl, A. Kandelbauer, W. Kern, U. Müller, M. Thebault, E. Zikulnig-Rusch, Prog. Org. Coat. 104 (2017) 232-249. |
[81] | C.H. Li, J.L. Zuo, Adv. Mater. 32 (2020) 1903762. |
[82] |
S. An, M. Liou, K.Y. Song, H.S. Jo, M.W. Lee, S.S. Al-Deyab, A.L. Yarin, S.S. Yoon, Nanoscale 7 (2015) 17778-17785.
DOI URL |
[83] |
A. Yabuki, K. Okumura, Corros. Sci. 59 (2012) 258-262.
DOI URL |
[84] |
X. Li, B. Li, Y. Li, J. Sun, Chem. Eng. J. 404 (2021) 126504.
DOI URL |
[85] |
N. Sharma, S. Sharma, S.K. Sharma, R. Mehta, Constr. Build. Mater. 259 (2020) 120278.
DOI URL |
[86] |
X. Wu, R. Luo, Z. Li, J. Wang, S. Yang, Chem. Eng. J. 398 (2020) 125593.
DOI URL |
[87] | S.J. García, H.R. Fischer, P.A. White, J. Mardel, Y. González-García, J.M.C. Mol, A.E. Hughes, Prog. Org. Coat. 70 (2011) 142-149. |
[88] |
Y. González-García, S.J. García, A.E. Hughes, J.M.C. Mol, Electrochem. Commun. 13 (2011) 1094-1097.
DOI URL |
[89] | J. Li, H. Shi, F. Liu, E.H. Han, Prog. Org. Coat. 156 (2021) 106236. |
[90] |
C. Liu, H. Wu, Y. Qiang, H. Zhao, L. Wang, Corros. Sci. 184 (2021) 109355.
DOI URL |
[91] |
Q. Wang, W. Wang, X. Ji, X. Hao, C. Ma, W. Hao, X. Li, S. Chen, ACS Appl. Mater. Interfaces 13 (2021) 3139-3152.
DOI URL |
[92] |
P. Thiangpak, A. Rodchanarowan, ACS Omega 5 (2020) 25647-25654.
DOI PMID |
[93] |
P.C. Uzoma, F. Liu, E.H. Han, J. Mater. Sci. Technol. 45 (2020) 70-83.
DOI |
[94] |
A. Habibiyan, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, M. Kasaeian, Chem. Eng. J. 391 (2020) 123630.
DOI URL |
[95] |
J.H. Xu, S. Ye, C.D. Ding, L.H. Tan, J.J. Fu, J. Mater. Chem. A 6 (2018) 5887-5898.
DOI URL |
[96] | H. Li, Y. Feng, Y. Cui, Y. Ma, Z. Zheng, B. Qian, H. Wang, A. Semenov, D. Shchukin, Prog. Org. Coat. 145 (2020) 105684. |
[97] | E. Adibzadeh, S.M. Mirabedini, M. Behzadnasab, R.R. Farnood, Prog. Org. Coat. 154 (2021) 106220. |
[98] |
M. Yang, J. Wu, D. Fang, B. Li, Y. Yang, J. Mater. Sci. Technol. 34 (2018) 2464-2471.
DOI URL |
[99] |
T.W. Chuo, Y.L. Liu, Polymer 125 (2017) 227-233 (Guildf).
DOI URL |
[100] |
Y. Zhu, M. Chen, L. Wu, Chem. Eng. J. 422 (2021) 130034.
DOI URL |
[101] |
T.W. Chuo, J.T. Hou, Y.L. Liu, Mater. Adv. 2 (2021) 3993-3999.
DOI URL |
[102] |
B. Wu, A. Yuan, Y. Xiao, Y. Wang, J. Lei, J. Mater. Chem. C 8 (2020) 12638-12647.
DOI URL |
[103] |
H. Yi, Y. Yang, X. Gu, J. Huang, C. Wang, J. Mater. Chem. A 3 (2015) 13749-13757.
DOI URL |
[104] | Y. Duan, Y. Wu, R. Yan, M. Lin, S. Sun, H. Ma, Prog. Org. Coat. 155 (2021) 106232. |
[105] |
F. Wu, J. Li, H. Quan, J. Han, X. Liu, X. Zhang, J. Yang, Y. Xiang, Appl. Surf. Sci. 542 (2021) 148561.
DOI URL |
[106] |
M. Huang, H. Zhang, J. Yang, Corros. Sci. 65 (2012) 561-566.
DOI URL |
[107] |
K. Kamaraj, R. Devarapalli, T. Siva, S. Sathiyanarayanan, Mater. Chem. Phys. 153 (2015) 256-265.
DOI URL |
[108] |
J. Xu, W. Chen, C. Wang, M. Zheng, C. Ding, W. Jiang, L. Tan, J. Fu, Chem. Mater. 30 (2018) 6026-6039.
DOI URL |
[109] |
F. Xia, L. Jiang, Adv. Mater. 20 (2008) 2842-2858.
DOI URL |
[110] | J. Baghdachi, Eur. Coating J. 9 (2010) 17-23. |
[111] | M. Akhondi, E. Jamalizadeh, Prog. Org. Coat. 145 (2020) 105676. |
[112] |
J. Wen, J. Lei, J. Chen, L. Liu, X. Zhang, L. Li, Mater. Chem. Phys. 253 (2020) 123425.
DOI URL |
[113] |
C. Zhou, Z. Li, J. Li, T. Yuan, B. Chen, X. Ma, D. Jiang, X. Luo, D. Chen, Y. Liu, Chem. Eng. J. 385 (2020) 123835.
DOI URL |
[114] |
J.B. Xu, Y.Q. Cao, L. Fang, J.M. Hu, Corros. Sci. 140 (2018) 349-362.
DOI URL |
[115] |
L.M. Calado, M.G. Taryba, Y. Morozov, M.J. Carmezim, M.F. Montemor, Corros. Sci. 170 (2020) 108648.
DOI URL |
[116] |
D.I. Njoku, M. Cui, H. Xiao, B. Shang, Y. Li, Sci. Rep. 7 (2017) 15597.
DOI URL |
[117] |
D.V. Andreeva, F. Dmitri, M. Helmuth, D.G. Shchukin, Adv. Mater. 20 (2008) 2789-2794.
DOI PMID |
[118] |
J.J. Fu, T. Chen, M.D. Wang, N.W. Yang, S.N. Li, Y. Wang, X.D. Liu, ACS Nano 7 (2013) 11397-11408.
DOI URL |
[119] |
T. Chen, R. Chen, Z. Jin, J. Liu, J. Mater. Chem. A 3 (2015) 9510-9516.
DOI URL |
[120] |
C. Ding, Y. Liu, M. Wang, T. Wang, J. Fu, J. Mater. Chem. A 4 (2016) 8041-8052.
DOI URL |
[121] |
E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, Y. Lvov, ACS Appl. Mater. Interfaces 5 (2013) 4464-4471.
DOI URL |
[122] | K. Zahidah, S. Kakooei, M. Ismail, P.B. Raja, Prog. Org. Coat. 111 (2017) 175-185. |
[123] |
G. Lanzara, Y. Yoon, H. Liu, S. Peng, W. Lee, Nanotechnology 20 (2009) 335704.
DOI URL |
[124] |
R. Raj, Y. Morozov, L.M. Calado, M.G. Taryba, R. Kahraman, R.A. Shakoor, M.F. Montemor, Corros. Sci. 167 (2020) 108548.
DOI URL |
[125] | E.D. Mekeridis, I.A. Kartsonakis, G.C. Kordas, Prog. Org. Coat. 73 (2012) 142-148. |
[126] |
A. Chenan, S. Ramya, R. George, U.K. Mudali, Ceram. Int. 40 (2014) 10457-10463.
DOI URL |
[127] |
A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami, Corros. Sci. 94 (2015) 207-217.
DOI URL |
[128] |
E.L. Ferrer, A.P. Rollon, H.D. Mendoza, U. Lafont, S.J. Garcia, Microporous Mesoporous Mater. 188 (2014) 8-15.
DOI URL |
[129] |
T. Chen, J. Fu, Nanotechnology 23 (2012) 505705.
DOI URL |
[130] |
S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Nature 409 (2001) 794-797.
DOI URL |
[131] |
I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, Corros. Sci. 53 (2011) 3771-3779.
DOI URL |
[132] |
S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, R. Serra, S.K. Poznyak, M.G.S. Ferreira, Prog. Org. Coat. 58 (2007) 127-135.
DOI URL |
[133] |
L. Hou, Y. Li, J. Sun, S. Zhang, H. Wei, Y. Wei, Appl. Surf. Sci. 487 (2019) 101-108.
DOI URL |
[134] |
J.V. Nardeli, C.S. Fugivara, M. Taryba, M.F. Montemor, A.V. Benedetti, Corros. Sci. 177 (2020) 108984.
DOI URL |
[135] |
D. Grigoriev, E. Shchukina, D.G. Shchukin, Adv. Mater. Interfaces 4 (2017) 1600318.
DOI URL |
[136] |
X. Chen, M. Dam, K. Ono, A. Mal, H. Shen, S. Nutt, K. Sheran, F. Wudl, Science 295 (2002) 1698-1702.
DOI URL |
[137] |
Q. Tian, Y. Yuan, M. Rong, M. Zhang, J. Mater. Chem. 19 (2009) 1289-1296.
DOI URL |
[138] |
M.A. Rahmathullah Y.A. Elabd, G.R. Palmese, J. Appl. Polym. Sci. 115 (2010) 1419-1427.
DOI URL |
[139] |
Y. Song, Y. Jo, Y. Lim, S. Cho, H. Yu, B. Ryu, S. Lee, C. Chung, ACS Appl. Mater. Interfaces 5 (2013) 1378-1384.
DOI URL |
[140] |
C.N. Njoku, W. Bai, I.O. Arukalam, L. Yang, Y. Li, J. Coat. Technol. Res. 17 (2020) 1-17.
DOI URL |
[141] |
Y. Huang, L. Deng, P. Ju, L. Huang, H. Qian, D. Zhang, X. Li, H.A. Terryn, J.M.C. Mol, ACS Appl. Mater. Interfaces 10 (2018) 23369-23379.
DOI URL |
[142] |
L. Ma, J. Wang, D. Zhang, Y. Huang, L. Huang, P. Wang, H. Qian, X. Li, H.A. Ter- ryn, J.M.C. Mol, Chem. Eng. J. 404 (2021) 127118.
DOI URL |
[143] | C. Zhang, L. Chen, Y. He, C. Chen, Y. Wu, F. Zhong, H. Li, P. Xie, X. Guo, Prog. Org. Coat. 151 (2021) 106036. |
[144] |
Y. Ye, H. Chen, Y. Zou, Y. Ye, H. Zhao, Corros. Sci. 174 (2020) 108825.
DOI URL |
[145] | A.M. Fadl, M.I. Abdou, M.A. Hamza, S.A. Sadeek, Prog. Org. Coat. 146 (2020) 105715. |
[146] | M. Attaei, L.M. Calado, Y. Morozov, M.G. Taryba, R.A. Shakoor, R. Kahraman, A.C. Marques, M.F. Montemor, Prog. Org. Coat. 147 (2020) 105864. |
[147] |
K. Li, H. Li, Y. Cui, Z. Li, J. Ji, Y. Feng, S. Chen, M. Zhang, H. Wang, Ind. Eng. Chem. Res. 58 (2019) 22032-22039.
DOI URL |
[148] | H. Li, Y. Cui, Z. Li, Y. Zhu, H. Wang, Prog. Org. Coat. 115 (2018) 164-171. |
[149] |
Z. Jia, P. Xiong, Y. Shi, W. Zhou, Y. Cheng, Y. Zheng, T. Xi, S. Wei, J. Mater. Chem. B 4 (2016) 2498-2511.
DOI URL |
[150] | S. Habib, A. Khan, M. Nawaz, M.H.R. Sliem, A. Zekri, Polymer 11 (2019) 1519-1538 (Guildf). |
[151] | A. Lutz, O. van den Berg, J. Wielant, I. De Graeve, H. Terryn, Front. Mater. 2 (2016) 1-12. |
[152] |
M. Nawaz, S. Habib, A. Khan, R.A. Shakoor, R. Kahraman, New J. Chem. 44 (2020) 5702-5710.
DOI URL |
[153] |
K. Thongchaivetcharat, S. Salaluk, D. Crespy, H. Thérien-Aubin, K. Landfester, ACS Appl. Mater. Interfaces 12 (2020) 42129-42139.
DOI URL |
[154] | T. Wang, J. Du, S. Ye, L.H. Tan, J.J. Fu, ACS Appl. Mater. Interfaces 11 (2019) 4 425-4 438. |
[155] |
C. Liu, H. Zhao, P. Hou, B. Qian, X. Wang, C. Guo, L. Wang, ACS Appl. Mater. Interfaces 10 (2018) 36229-36239.
DOI URL |
[156] |
C. Ding, J. Xu, L. Tong, G. Gong, W. Jiang, J. Fu, ACS Appl. Mater. Interfaces 9 (2017) 21034-21047.
DOI URL |
[1] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[2] | Xiaohong Ji, Wei Wang, Xia Zhao, Lifei Wang, Fubin Ma, Yanli Wang, DuanJi zhou, Baorong Hou. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101(0): 128-145. |
[3] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[4] | Huihui Bai, Zhixing Zhang, Yajie Huo, Yongtao Shen, Mengmeng Qin, Wei Feng. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties [J]. J. Mater. Sci. Technol., 2022, 98(0): 169-176. |
[5] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[6] | He Zhang, Kaibin Xiao, Zhilin Lin, Shengyu Shi. Epoxy microcapsules for high-performance self-healing materials using a novel method via integrating electrospraying and interfacial polymerization [J]. J. Mater. Sci. Technol., 2022, 112(0): 59-67. |
[7] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
[8] | Li Cheng, Chengbao Liu, Hao Wu, Haichao Zhao, Feixiong Mao, Liping Wang. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings [J]. J. Mater. Sci. Technol., 2021, 80(0): 36-49. |
[9] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[10] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[11] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[12] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[13] | Aeree Kim, Seonghyeon Kim, Myoung Huh, Hyungmo Kim, Chan Lee. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 106-116. |
[14] | Lian Guo, Wei Wu, Yongfeng Zhou, Fen Zhang, Rongchang Zeng, Jianmin Zeng. Layered double hydroxide coatings on magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1455-1466. |
[15] | Baihao You, Qingtao Li, Hua Dong, Tao Huang, Xiaodong Cao, Hua Liao. Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair [J]. J. Mater. Sci. Technol., 2018, 34(6): 1016-1025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||