J. Mater. Sci. Technol. ›› 2022, Vol. 116: 238-245.DOI: 10.1016/j.jmst.2021.09.022
• Research Article • Previous Articles Next Articles
Zhengran Chena,b, Ruihong Lianga,c,d,*(), Chi Zhanga,c, Zhiyong Zhoua,c, Yuchen Lia, Zhenming Liue, Xianlin Donga,c,d,*(
)
Received:
2021-08-11
Revised:
2021-09-29
Accepted:
2021-09-30
Published:
2022-01-21
Online:
2022-07-26
Contact:
Ruihong Liang,Xianlin Dong
About author:
xldong@mail.sic.ac.cn (X. Dong).Zhengran Chen, Ruihong Liang, Chi Zhang, Zhiyong Zhou, Yuchen Li, Zhenming Liu, Xianlin Dong. High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling[J]. J. Mater. Sci. Technol., 2022, 116: 238-245.
Fig. 2. X-ray diffraction patterns of different poling states of PSN-PZT ceramics with (a) 2θ =10°-70° (b) 2θ = 42°-46°; SEM images of (c) unpoled, (d) traditional poled and (e) high-temperature poled PSN-PZT ceramics.
Fig. 3. PFM phase and amplitude images of PSN-PZT for (a, b) traditional poling, and (c, d) high-temperature poling; (e) phase density distribution; (f) amplitude density distribution.
Poling electric field (V/mm) | d33 (pC/N) | kp | εr |
---|---|---|---|
50 | 431 | 0.631 | 2063 |
100 | 553 | 0.667 | 2606 |
150 | 544 | 0.665 | 2601 |
200 | 553 | 0.668 | 2630 |
400 | 562 | 0.671 | 2599 |
600 | 553 | 0.669 | 2593 |
800 | 562 | 0.673 | 2589 |
1000 | 560 | 0.670 | 2588 |
Traditional poling | 482 | 0.651 | 2325 |
Table 1. The d33, εr and kp of the high-temperature poled PSN-PZT at poling electric field of 50-1000 V/mm.
Poling electric field (V/mm) | d33 (pC/N) | kp | εr |
---|---|---|---|
50 | 431 | 0.631 | 2063 |
100 | 553 | 0.667 | 2606 |
150 | 544 | 0.665 | 2601 |
200 | 553 | 0.668 | 2630 |
400 | 562 | 0.671 | 2599 |
600 | 553 | 0.669 | 2593 |
800 | 562 | 0.673 | 2589 |
1000 | 560 | 0.670 | 2588 |
Traditional poling | 482 | 0.651 | 2325 |
Fig. 7. Under different poling electric fields, the rate of change of d33, εr and kp of the high-temperature poled PSN-PZT relative to the traditional poled one.
[1] |
X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, Sensors 14 (2014) 144-169.
DOI URL |
[2] |
S. Zhang, F. Yu, D.J. Green, J. Am. Ceram. Soc. 94 (2011) 3153-3170.
DOI URL |
[3] | S.J. Zhang, F. Li, F.P. Yu, Structural Health Monitoring (SHM) in Aerospace Struc- tures, Woodhead Publishing, 2016, pp. 59-93. |
[4] |
S. Zhang, C.A. Randall, T.R. Shrout, Appl. Phys. Lett. 83 (2003) 3150-3152.
DOI URL |
[5] |
Z. Liu, C. Zhao, J. Li, K. Wang, J. Wu, J. Mater. Chem. C 6 (2018) 456-463.
DOI URL |
[6] |
Z. Yao, C. Xu, H. Liu, H. Hao, M. Cao, Z. Wang, Z. Song, W. Hu, A. Ullah, J. Mater. Sci. Mater. Electron. 25 (2014) 4975-4982.
DOI URL |
[7] |
L. Wang, R. Liang, Z. Zhou, M. Li, M. Gu, P. Wang, X. Dong, J. Eur. Ceram. Soc. 39 (2019) 4727-4734.
DOI |
[8] |
J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115 (2015) 2559-2595.
DOI URL |
[9] |
Y. Zhang, J. Li, J. Mater. Chem. C 7 (2019) 4284-4303.
DOI URL |
[10] |
H. Zhao, Y. Hou, X. Yu, M. Zheng, M. Zhu, Acta Mater. 181 (2019) 238-248.
DOI URL |
[11] |
C. Huang, K. Cai, Y. Wang, Y. Bai, D. Guo, J. Mater. Chem. C 6 (2018) 1433-1444.
DOI URL |
[12] |
Z. Li, H. Thong, Y. Zhang, Z. Xu, Z. Zhou, Y. Liu, Y. Cheng, S. Wang, C. Zhao, F. Chen, K. Bi, B. Han, K. Wang, Adv. Funct. Mater. 31 (2021) 2005012.
DOI URL |
[13] |
B. Gao, Z. Yao, D. Lai, Q. Guo, W. Pan, H. Hao, M. Cao, H. Liu, J. Alloy. Compd. 836 (2020) 155474.
DOI URL |
[14] |
J. Yoo, K. Yoon, Y. Lee, S. Suh, J. Kim, C. Yoo, Jpn. J. Appl. Phys. 39 (20 0 0) 2680.
DOI URL |
[15] |
S. Huang, J. Zeng, L. Zheng, Z. Man, X. Ruan, X. Shi, G. Li, Ceram. Int. 46 (2020) 6212-6216.
DOI URL |
[16] |
Y. Guo, W. Ma, M. Wang, N. Chen, Mater. Lett. 159 (2015) 126-130.
DOI URL |
[17] |
C. Zhao, D. Hou, C.C. Chung, H. Zhou, A. Kynast, E. Hennig, W. Liu, S. Li, J.L. Jones, Acta Mater. 158 (2018) 369-380.
DOI URL |
[18] | S. Samanta, V. Sankaranarayanan, K. Sethupathi, Mater. Today: Proc. 5 (2018) 27919-27927. |
[19] |
N. Kumari, S. Monga, M. Arif, N. Sharma, A. Sanger, A. Singh, P.M. Vilarinho, V. Gupta, K. Sreenivas, R.S. Katiyar, Ceram. Int. 45 (2019) 12716-12726.
DOI |
[20] |
R.A. Eichel, E. Erünal, M.D. Drahus, D.M. Smyth, J. van Tol, J. Acker, H. Kungl, M.J. Hoffmann, Phys. Chem. Chem. Phys. 11 (2009) 8698-8705.
DOI URL |
[21] |
S. Puthucheri, P.K. Pandey, N.S. Gajbhiye, A. Gupta, A. Singh, R. Chatterjee, S.K. Date, A. Bandyopadhyay, J. Am. Ceram. Soc. 94 (2011) 3941-3947.
DOI URL |
[22] |
B. Li, J.E. Blendell, K.J. Bowman, M. Hoffmann, J. Am. Ceram. Soc. 94 (2011) 3192-3194.
DOI URL |
[23] |
R.D. Roseman, Ferroelectrics 215 (1998) 31-45.
DOI URL |
[24] |
H. Tao, Z. Wang, S. Zhao, C. Zhao, J. Yin, J. Wu, J. Am. Ceram. Soc. 103 (2020) 4402-4410.
DOI URL |
[25] |
F. Li, L. Wang, L. Jin, Z. Xu, S. Zhang, CrystEngComm 16 (2014) 2892-2897.
DOI URL |
[26] |
J.L. Jones, B.J. Iverson, K.J. Bowman, J. Am. Ceram. Soc. 90 (2007) 2297-2314.
DOI URL |
[27] | Q. Tan, D. Viehland, J. Am. Ceram. Soc. 81 (1998) 328-336. |
[28] |
Q. Tan, J. Li, D. Viehland, Philos. Mag. B 76 (1997) 59-74.
DOI URL |
[29] |
K. Uchino, S. Nomura, Ferroelectrics 44 (1982) 55-61.
DOI URL |
[30] |
C. Li, T. Zheng, J. Wu, Acta Mater. 206 (2021) 116601.
DOI URL |
[31] |
A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rödel, J. Appl. Phys. 104 (2008) 024116.
DOI URL |
[1] | Anchal Sharma, Puneet Negi, Ruhit Jyoti Konwar, Hemaunt Kumar, Yogita Verma, Shailja, Prakash Chandra Sati, Bhargav Rajyaguru, Himanshu Dadhich, N.A. Shah, P.S. Solanki. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions [J]. J. Mater. Sci. Technol., 2022, 111(0): 287-297. |
[2] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[3] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
[4] | Swadipta Roy, C.V. Ramana. Effect of sintering temperature on the chemical bonding, electronic structure and electrical transport properties of β-Ga1.9Fe0.1O3 compounds [J]. J. Mater. Sci. Technol., 2021, 67(0): 135-144. |
[5] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[6] | Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables [J]. J. Mater. Sci. Technol., 2020, 42(0): 46-53. |
[7] | Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks [J]. J. Mater. Sci. Technol., 2019, 35(5): 769-776. |
[8] | Haoran Liu, Zhenyi Zhang, Jun Ge, Xiao Lin, Xinye Ni, Huilin Yang, Lei Yang. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection [J]. J. Mater. Sci. Technol., 2019, 35(1): 176-180. |
[9] | Ruimei Yuan, Hejun Li, Xuemin Yin, Leilei Zhang, Jinhua Lu. Stable controlled growth of 3D CuO/Cu nanoflowers by surfactant-free method for non-enzymatic hydrogen peroxide detection [J]. J. Mater. Sci. Technol., 2018, 34(9): 1692-1698. |
[10] | Zalak Joshi, Davit Dhruv, K.N. Rathod, J.H. Markna, A. Satyaprasad, A.D. Joshi, P.S. Solanki, N.A. Shah. Size effects on electrical properties of sol-gel grown chromium doped zinc oxide nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(3): 488-495. |
[11] | Gao Juan, He Gang, Xiao Dongqi, Jin Peng, Jiang Shanshan, Li Wendong, Liang Shuang, Zhu Li. Passivation of Ge surface treated with trimethylaluminum and investigation of electrical properties of HfTiO/Ge gate stacks [J]. J. Mater. Sci. Technol., 2017, 33(8): 901-906. |
[12] | Wei Wenzuo, Hong Ruijin, Wang Jinxia, Tao Chunxian, Zhang Dawei. Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films [J]. J. Mater. Sci. Technol., 2017, 33(10): 1107-1112. |
[13] | Carlini Riccardo,Alfieri Ilaria,Zanicchi Gilda,Soggia Francesco,Gombia Enos,Lorenzi Andrea. Synthesis and Characterization of Iron-Rich Glass Ceramic Materials: A Model for Steel Industry Waste Reuse [J]. J. Mater. Sci. Technol., 2016, 32(11): 1105-1110. |
[14] | Junhua Zhao, Ruiqin Tan, Ye Yang, Wei Xu, Jia Li, Wenfeng Shen, Guoqiang Wu, Xufeng Yang, Weijie Song. High-performance Sb:SnO2 Compact Thin Film Based on Surfactant-free and Binder-free Sb:Sn3O4 Suspension [J]. J. Mater. Sci. Technol., 2015, 31(8): 815-821. |
[15] | Liu Z.Y., Xiao B.L., Wang W.G., Ma Z.Y.. Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing [J]. J. Mater. Sci. Technol., 2014, 30(7): 649-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||