J. Mater. Sci. Technol. ›› 2022, Vol. 111: 287-297.DOI: 10.1016/j.jmst.2021.09.014
• Research Article • Previous Articles Next Articles
Anchal Sharmaa, Puneet Negia,*(), Ruhit Jyoti Konwarb, Hemaunt Kumarc, Yogita Vermaa, Shailjaa, Prakash Chandra Satid, Bhargav Rajyagurue, Himanshu Dadhiche, N.A. Shahe, P.S. Solankie
Received:
2021-06-16
Revised:
2021-08-17
Accepted:
2021-09-05
Published:
2021-12-01
Online:
2021-12-01
Contact:
Puneet Negi
About author:
* E-mail addresses: puneetphymat@gmail.com, puneetnegi@eternaluniversity.edu.in (P. Negi).Anchal Sharma, Puneet Negi, Ruhit Jyoti Konwar, Hemaunt Kumar, Yogita Verma, Shailja, Prakash Chandra Sati, Bhargav Rajyaguru, Himanshu Dadhich, N.A. Shah, P.S. Solanki. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions[J]. J. Mater. Sci. Technol., 2022, 111: 287-297.
Simulated /calculated crystallographic parameters | TiO2 | N-TiO2 | Co-TiO2 | N-Co-TiO2 | ||
---|---|---|---|---|---|---|
Lattice parameters | a = b (A°) c (A°) | 3.784 (0) 9.507 (1) | 3.784 (0) 9.504 (1) | 3.786 (0) 9.502 (1) | 3.785 (0) 9.501(1) | |
Atomic positions | X | Ti Co O N | 0.000 (0) - 0.000 (0) - | 0.000 (0) - 0.000 (0) 0.000 (0) | 0.000 (0) 0.000 (0) 0.000 (0) - | 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) |
Y | Ti Co O N | 0.750 (0) - 0.750 (0) - | 0.750 (0) - 0.750 (0) 0.750 (0) | 0.750 (0) 0.750 (0) 0.750 (0) - | 0.750 (0) 0.750(0) 0.750 (0) 0.750 (0) | |
Ti Co O N | 0.125 (0) - 0.335 (0) - | 0.125 (0) - 0.334 (0) 0.334 (0) | 0.125 (0) 0.125 (0) 0.337 (0) - | 0.125 (0) 0.125 (0) 0.335 (0) 0.335 (0) | ||
Shape/FWHM parameters | U V W | 1.399 (0) - 0.682 (0) 0.435 (0) | 1.345 (0) - 0.676 (0) 0.503 (0) | 1.541 (0) - 0.841 (0) 0.531 (0) | 0.374 (0) 0.510 (0) 0.477 (0) | |
R-factors | Rp Rexp Rwp Rf Rbragg | 18.0 21.3 23.0 3.01 4.81 | 16.7 20.8 22.0 2.89 4.04 | 19.5 22.3 23.7 3.45 5.38 | 18.1 22.1 23.5 3.15 4.33 | |
GOF(χ2) Volume per unit cell (Å3) | 1.16 136.178(7) | 1.13 136.115(3) | 1.13 136.196(4) | 1.13 136.094(6) | ||
Calculated corresponding to the most intense (101) peak | ||||||
FWHM (deg.) Crystallite Size (nm) X-ray density (gcm-3) Specific surface area (m2/g) | 0.594(3) 14.20(1) 3.896(1) 109(6) | 0.647(2) 12.82(3) 3.894(1) 119(5) | 0.648(1) 12.92(5) 3.899(1) 119(6) | 0.781(2) 10.12(8) 3.901(1) 152(6) | ||
Calculated by W-H Plot | ||||||
Crystallite size (nm) Lattice strain, ε | 16.38(4) 12(2)×10-4 | 14.16(2) 8(2)×10-4 | 14.41(4) 9(2)×10-4 | 10.80(2) 7(1) ×10-4 | ||
Crystallographic structure parameters using VESTA software | ||||||
Bond Angle (deg.) | O-Ti-O O-Ti-O O-Ti-O O-Ti-O O-Ti-O | 78.75(1) 92.18(5) 101.25(5) 157.5(3) 180.00(0) | 78.42(2) 92.31(5) 101.58(1) 156.8(3) 180.00(0) | 79.23(4) 92.00(5) 100.77(2) 158.5(3) 180.00(0) | 78.51(1) 92.28(5) 101.49(3) 157.0(3) 180.00(0) | |
Bond Length (Å) | Ti-O Ti-O | 1.9294(8) 2.000(4) | 1.9315(9) 1.988(4) | 1.9269(8) 2.016(4) | 1.9311(9) 1.990(4) |
Table 1. FULLPROF based Rietveld refined parameters and calculated crystallographic parameters from the XRD patterns of pristine and doped TiO2 nanoparticles prepared by auto-combustion sol-gel technique. Error of refined and calculated parameters have been shown in parentheses along with their values.
Simulated /calculated crystallographic parameters | TiO2 | N-TiO2 | Co-TiO2 | N-Co-TiO2 | ||
---|---|---|---|---|---|---|
Lattice parameters | a = b (A°) c (A°) | 3.784 (0) 9.507 (1) | 3.784 (0) 9.504 (1) | 3.786 (0) 9.502 (1) | 3.785 (0) 9.501(1) | |
Atomic positions | X | Ti Co O N | 0.000 (0) - 0.000 (0) - | 0.000 (0) - 0.000 (0) 0.000 (0) | 0.000 (0) 0.000 (0) 0.000 (0) - | 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) |
Y | Ti Co O N | 0.750 (0) - 0.750 (0) - | 0.750 (0) - 0.750 (0) 0.750 (0) | 0.750 (0) 0.750 (0) 0.750 (0) - | 0.750 (0) 0.750(0) 0.750 (0) 0.750 (0) | |
Ti Co O N | 0.125 (0) - 0.335 (0) - | 0.125 (0) - 0.334 (0) 0.334 (0) | 0.125 (0) 0.125 (0) 0.337 (0) - | 0.125 (0) 0.125 (0) 0.335 (0) 0.335 (0) | ||
Shape/FWHM parameters | U V W | 1.399 (0) - 0.682 (0) 0.435 (0) | 1.345 (0) - 0.676 (0) 0.503 (0) | 1.541 (0) - 0.841 (0) 0.531 (0) | 0.374 (0) 0.510 (0) 0.477 (0) | |
R-factors | Rp Rexp Rwp Rf Rbragg | 18.0 21.3 23.0 3.01 4.81 | 16.7 20.8 22.0 2.89 4.04 | 19.5 22.3 23.7 3.45 5.38 | 18.1 22.1 23.5 3.15 4.33 | |
GOF(χ2) Volume per unit cell (Å3) | 1.16 136.178(7) | 1.13 136.115(3) | 1.13 136.196(4) | 1.13 136.094(6) | ||
Calculated corresponding to the most intense (101) peak | ||||||
FWHM (deg.) Crystallite Size (nm) X-ray density (gcm-3) Specific surface area (m2/g) | 0.594(3) 14.20(1) 3.896(1) 109(6) | 0.647(2) 12.82(3) 3.894(1) 119(5) | 0.648(1) 12.92(5) 3.899(1) 119(6) | 0.781(2) 10.12(8) 3.901(1) 152(6) | ||
Calculated by W-H Plot | ||||||
Crystallite size (nm) Lattice strain, ε | 16.38(4) 12(2)×10-4 | 14.16(2) 8(2)×10-4 | 14.41(4) 9(2)×10-4 | 10.80(2) 7(1) ×10-4 | ||
Crystallographic structure parameters using VESTA software | ||||||
Bond Angle (deg.) | O-Ti-O O-Ti-O O-Ti-O O-Ti-O O-Ti-O | 78.75(1) 92.18(5) 101.25(5) 157.5(3) 180.00(0) | 78.42(2) 92.31(5) 101.58(1) 156.8(3) 180.00(0) | 79.23(4) 92.00(5) 100.77(2) 158.5(3) 180.00(0) | 78.51(1) 92.28(5) 101.49(3) 157.0(3) 180.00(0) | |
Bond Length (Å) | Ti-O Ti-O | 1.9294(8) 2.000(4) | 1.9315(9) 1.988(4) | 1.9269(8) 2.016(4) | 1.9311(9) 1.990(4) |
Fig. 3. Raman spectra of pristine and doped TiO2 nanoparticles. Inset: An enlarged view of most intense Raman peaks for pristine and doped TiO2 nanoparticles.
Raman modes (cm-1) | TiO2 | N-TiO2 | Co-TiO2 | N-Co-TiO2 |
---|---|---|---|---|
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg1(1) | 143 | 144 | 145 | 145 |
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg(2) | 196 | 195 | 197 | 192 |
Symmetric bending vibration of O-Ti-O bond B1g | 397 | 394 | 396 | 394 |
Vibration of O-Ti-O bond with fixed Ti atom (A1g & B1g) | 515 | 514 | 513 | 515 |
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg(3) | 639 | 638 | 636 | 637 |
Table 2. Raman modes of pristine and doped TiO2 nanoparticles.
Raman modes (cm-1) | TiO2 | N-TiO2 | Co-TiO2 | N-Co-TiO2 |
---|---|---|---|---|
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg1(1) | 143 | 144 | 145 | 145 |
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg(2) | 196 | 195 | 197 | 192 |
Symmetric bending vibration of O-Ti-O bond B1g | 397 | 394 | 396 | 394 |
Vibration of O-Ti-O bond with fixed Ti atom (A1g & B1g) | 515 | 514 | 513 | 515 |
Symmetric stretching vibration of oxygen atoms in O-Ti-O bond, Eg(3) | 639 | 638 | 636 | 637 |
Fig. 5. Variation in dielectric constant with frequency for pristine and doped TiO2 nanoparticles. Inset: An enlarged view of frequency (in log scale representation) dependent dielectric constant for pristine and doped TiO2 nanoparticles.
Fig. 6. Plots of log(fε′) vs log(f) for pristine and doped TiO2 nanoparticles. Inset: An enlarged view of log(fε′) vs log(f) plots for pristine and doped TiO2 nanoparticles.
Fig. 7. Variation in dielectric loss (tanδ) with log(f) for pristine and doped TiO2 nanoparticles. Inset: Variation in dielectric loss (tanδ) with log(f) for pristine and N-TiO2 nanoparticles.
Fig. 9. Variation in real part of impedance (Z′) with log(f) for pristine and doped TiO2 nanoparticles. Inset: An enlarged view of Z′ vs. log(f) plots for pristine and doped TiO2 nanoparticles.
Fig. 10. Variation in ANC in impedance with frequency (in logarithmic scale) for pristine and doped TiO2 nanoparticles. Inset: An enlarged view of ANC vs. log(f) plots for pristine and doped TiO2 nanoparticles.
Fig. 11. Cole-Cole plots for pristine and doped TiO2 nanoparticles. Inset: An enlarged view of cole-cole plots for pristine and doped TiO2 nanoparticles.
[1] | M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S. Al-Deyab, Y. Lai, 4, J. Mater. Chem. A (2016) 6772-6801. |
[2] | W.Y. Rho, H. Jeon, H.S. Kim, W.J. Chung, J.S. Suh, B.H. Jun, J. Nanomater. 16 (2015) 85. |
[3] |
P. Tran, L.H. Wong, J. Barber, SC Loo J, Energy Environ. Sci. 5 (2012) 5902-5918.
DOI URL |
[4] | S.M. Gupta, M. Tripathi, A review of TiO 2 nanoparticles, Chin. Sci. Bull. 56 (2011) 1639. |
[5] |
O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 33-177.
DOI URL |
[6] |
C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, Nano Lett. 14 (2014) 6533-6538.
DOI URL |
[7] |
V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Materiomics 3 (2017) 3-16.
DOI URL |
[8] | F.A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, F. Şen, J. Mol. Liq. 299 (2020) 112177. |
[9] |
Z. Liu, Z. Cui, Z. Zhang, Mater. Character. 54 (2005) 123-129.
DOI URL |
[10] |
A. Sirivallop, T. Areerob, S. Chiarakorn, Catalysts 10 (2020) 251.
DOI URL |
[11] |
R. Dholam, N. Patel, M. Adami, A. Miotello, Int. J. Hydrog. Energy 34 (2009) 5337-5346.
DOI URL |
[12] |
R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Mater. Des. 96 (2016) 44-53.
DOI URL |
[13] |
J. Senthilnathan, L. Philip, Chem. Eng. J. 161 (2010) 83-92.
DOI URL |
[14] |
Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Appl. Catal. B 91 (2009) 355-361.
DOI URL |
[15] | L. Jiang, Z. Luo, Y. Li, W. Wang, J. Li, J. Li, Y. Ao, J. He, V.K. Sharma, J. Wang, Chem. Eng. J. (2020) 125549. |
[16] |
X. Li, J. Shi, H. Chen, R. Wan, C. Leng, S. Chen, Y. Lei, Comput. Mater. Sci. 129 (2017) 295-303.
DOI URL |
[17] | R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D. Kothari, A. Miotello, Appl. Catal. B-Environ. 168 (2015) 333-341. |
[18] |
A. Gupta, K. Sahu, M. Dhonde, V. Murty, Solar Energy 203 (2020) 296-303.
DOI URL |
[19] |
W. Zhu, X. Qiu, V. Iancu, X.Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer III, M.P. Paranthaman, Phys. Rev. Lett. 103 (2009) 226401.
DOI URL |
[20] |
A. Dashora, N. Patel, D. Kothari, B. Ahuja, A. Miotello, Solar Energy Mater. Solar Cells 125 (2014) 120-126.
DOI URL |
[21] | S. Wang, X. Yang, Q. Jiang, J. Lian, Mater. Sci. Semicond. Proc. 24 (2014) 247-253. |
[22] |
H. Song, G. Zhou, C. Wang, X. Jiang, C. Wu, T. Li, Res. Chem. Intermed. 39 (2013) 747-758.
DOI URL |
[23] |
Y. Gai, J. Li, S.-S. Li, J.-B. Xia, S.-H. Wei, Phys. Rev. Lett. 102 (2009) 036402.
DOI URL |
[24] |
H. Kisch, S. Sakthivel, M. Janczarek, D. Mitoraj, J. Phys. Chem. C 111 (2007) 11445-11449.
DOI URL |
[25] |
H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486.
DOI URL |
[26] |
T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, J. Phys. Chem. C 112 (2008) 14595-14602.
DOI URL |
[27] |
S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, New J. Chem. 40 (2016) 3000-3009.
DOI URL |
[28] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
DOI PMID |
[29] |
K.M. Reddy, B. Baruwati, M. Jayalakshmi, M.M. Rao, S.V. Manorama, J. Solid State Chem. 178 (2005) 3352-3358.
DOI URL |
[30] |
Y. Nosaka, M. Matsushita, J. Nishino, A.Y. Nosaka, Sci. Technol. Adv. Mater. 6 (2005) 143.
DOI URL |
[31] |
L. Hu, J. Wang, J. Zhang, Q. Zhang, Z. Liu, RSC Adv. 4 (2014) 420-427.
DOI URL |
[32] | V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B-Environ. 170 (2015) 153-161. |
[33] |
M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, J. Colloid Interface Sci. 224 (2000) 202-204.
DOI URL |
[34] | J.M. Sullivan, S.C. Erwin, Phys. Rev. B 67 (2003) 14 4 415. |
[35] | S.N. Hoseini, A.K. Pirzaman, M.A. Aroon, A.E. Pirbazari, J. Water Proc. Eng. 17 (2017) 124-134. |
[36] |
T.M.H. Nguyen, C.W. Bark, ACS Omega 5 (2020) 2280-2286.
DOI PMID |
[37] |
G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, Int. J. Hydrogen Energy 38 (2013) 9655-9664.
DOI URL |
[38] |
J.K. Kim, S.U. Chai, Y. Ji, B. Levy-Wendt, S.H. Kim, Y. Yi, T.F. Heinz, J.K. Nørskov, J.H. Park, X. Zheng, Adv. Energy Mater. 8 (2018) 1801717.
DOI URL |
[39] |
A. Shalan, M. Rashad, Appl. Surf. Sci. 283 (2013) 975-981.
DOI URL |
[40] | B. Yacoubi, L. Samet, J. Bennaceur, A. Lamouchi, R. Chtourou, Mater. Sci. Semi- cond. Proc. 30 (2015) 361-367. |
[41] |
A. Kaushik, B. Dalela, S. Kumar, P. Alvi, S. Dalela, J. Alloys Compd. 552 (2013) 274-278.
DOI URL |
[42] |
B. Barrocas, A.J. Silvestre, A.G. Rolo, O. Monteiro, Phys. Chem. Chem. Phys. 18 (2016) 18081-18093.
DOI PMID |
[43] |
P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Solid State Sci. 46 (2015) 27-32.
DOI URL |
[44] |
C. Khurana, O. Pandey, B. Chudasama, J. Sol-Gel Sci. Technol. 75 (2015) 424-435.
DOI URL |
[45] |
S. Liu, Q. Li, C. Hou, X. Feng, Z. Guan, J. Alloys Compd. 575 (2013) 128-136.
DOI URL |
[46] | J.Y. Shi, W.H. Leng, X.F. Cheng, Z. Zhang, J.Q. Zhang, C.N. Cao, Chin. J. Nonfer- rous Met. 17 (2007) 1536-1542. |
[47] | L. Zhang, X. Li, Z. Chang, D. Li, Mater. Sci. Semicond. Proc. 14 (2011) 52-57. |
[48] | A. Garg, T. Singhania, A. Singh, S. Sharma, S. Rani, A. Neogy, S.R. Yadav, V.K. Sangal, N. Garg, Sci. Rep. 9 (2019) 1-13. |
[49] |
G. Kaur, P. Negi, M. Kaur, R. Sharma, R.J. Konwar, A. Mahajan, Ceram. Int. 44 (2018) 18484-18490.
DOI URL |
[50] | J. Rodríguez-Carvajal, in: Abstract of the Satellite Meeting on Powder Diffrac- tion of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127. |
[51] | R.A. Young, The Rietveld Method, Oxford university Press, Oxford, 1993. |
[52] |
K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653-658.
DOI URL |
[53] |
P.N.K. Reddy, D.P. Shaik, V. Ganesh, D. Nagamalleswari, K. Thyagarajan, P.V. Prasanth, Ceram. Int. 45 (2019) 16251-16260.
DOI URL |
[54] |
G. Kaur, P. Negi, M. Kaur, R. Sharma, R.J. Konwar, A. Mahajan, Ceram. Int. 44 (2018) 18484-18490.
DOI URL |
[55] |
C. Murugesan, G. Chandrasekaran, RSC Adv. 5 (2015) 73714-73725.
DOI URL |
[56] |
A. Ahlawat, V. Sathe, V. Reddy, A. Gupta, J. Magn. Magn. Mater. 323 (2011) 2049-2054.
DOI URL |
[57] |
F. Tian, Y. Zhang, J. Zhang, C. Pan, J. Phys. Chem. C 116 (2012) 7515-7519.
DOI URL |
[58] |
M. Pal, U. Pal J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Nanoscale Res. Lett. 7 (2012) 1-12.
DOI URL |
[59] |
H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37 (2005) 33-38.
DOI URL |
[60] | N. Horti, M. Kamatagi, N. Patil, S. Nataraj, M. Sannaikar, S. Inamdar, Optik (Stuttg) 194 (2019) 163070. |
[61] |
J. Mohammed, A. Suleiman, T.T.T. Carol, H. Hafeez, J. Sharma, P.K. Maji, S.G. Ku- mar, A. Srivastava, Chin. Phys. B 27 (2018) 128104.
DOI URL |
[62] | M. Khairy, W. Zakaria, Egyptian J. Petrol. 23 (2014) 419-426. |
[63] |
S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, M.M. Miranda, Philos. Mag. 97 (2017) 17-27.
DOI URL |
[64] |
S. Suresh, Appl. Nanosci. 4 (2014) 325-329.
DOI URL |
[65] |
K. Karthik, S.K. Pandian, N.V. Jaya, Appl. Surf. Sci. 256 (2010) 6829-6833.
DOI URL |
[66] |
V. Ranjan, V.A. Singh, J. Appl. Phys. 89 (2001) 6415-6421.
DOI URL |
[67] |
R. Elwej, M. Hamdi, N. Hannachi, F. Hlel, Mater. Res. Bull. 62 (2015) 42-51.
DOI URL |
[68] |
J. Izquierdo, G. Bolanos, V. Zapata, O. Moran, Curr. Appl. Phys. 14 (2014) 1492-1497.
DOI URL |
[69] |
K. Abdouli, W. Cherif, E. Kadri, K. Dhahri, P. Prezas, M. Graça, M. Valent, L. Ktari, J. Alloys Compd. 739 (2018) 1048-1058.
DOI URL |
[70] | S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19 (2016) 1-8. |
[71] | S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177 (2012) 428-435. |
[1] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
[2] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[3] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[4] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[5] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[6] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[7] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[8] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[9] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
[10] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[11] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[12] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[13] | Shengshen Gu, Aleksei N. Marianov, Haimei Xu, Yijiao Jiang. Effect of TiO2 support on immobilization of cobalt porphyrin for electrochemical CO2 reduction [J]. J. Mater. Sci. Technol., 2021, 80(0): 20-27. |
[14] | Kaibin Li, Ming Li, Chang Xu, Zengyan Du, Jiawang Chen, Fengxia Zou, Chongwen Zou, Sichao Xu, Guanghai Li. A TiO2 nanotubes film with excellent antireflective and near-perfect self-cleaning performances [J]. J. Mater. Sci. Technol., 2021, 88(0): 11-20. |
[15] | Huimin Xiang, Fuzhi Dai, Yanchun Zhou. Secrets of high thermal emission of transition metal disilicides TMSi2 (TM = Ta, Mo) [J]. J. Mater. Sci. Technol., 2021, 89(0): 114-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||