J. Mater. Sci. Technol. ›› 2022, Vol. 111: 298-306.DOI: 10.1016/j.jmst.2021.10.013
• Research Article • Previous Articles Next Articles
Yinuo Guoa, Haijun Sua,b,*(), Haotian Zhoua, Zhonglin Shena, Yuan Liua, Jun Zhanga, Lin Liua, Hengzhi Fua
Received:
2021-09-03
Revised:
2021-10-19
Accepted:
2021-10-19
Published:
2021-12-01
Online:
2021-12-01
Contact:
Haijun Su
About author:
* State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China. E-mail address: shjnpu@nwpu.edu.cn (H. Su).Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298-306.
Fig. 3. The XRD patterns of the raw AlCoCrFeNi pre-alloy powder and SLM-ed AlCoCrFeNi2.1 sample (a) and magnification in 2θ ranges from 78° to 88° (b).
Fig. 4. Effect of laser energy density on the relative density of SLM-ed AlCoCrFeNi2.1 sample (a) and optical metallographs: (b) 88.89 J/mm3; (c) 104.76 J/mm3; (d) 126.98 J/mm3; (e) 190.06 J/mm3.
Fig. 5. Microstructure evolution as functions of laser power of (a) 200 W, (b) 300 W, (c) 400 W, and scanning speed of (1) 600 mm/s, (2) 800 mm/s and (3) 1000 mm/s.
Fig. 6. EBSD analysis of SLM-ed AlCoCrFeNi2.1 sample at VED 166.67 J/mm3: (a1, b1) the IPF maps and (a2, b2) grain boundaries with IPF maps and (a3, b3) KAM maps for sections along the building direction and perpendicular to the building direction, respectively.
Fig. 8. The fracture morphology of the SLM-ed AlCoCrFeNi2.1 for different VEDs: (a) 121.21 J/mm3; (b) 126.98 J/mm3; (c) 141.41 J/mm3; (d) 166.67 J/mm3; (e) 176.77 J/mm3.
Fig. 9. Bright-field TEM micrographs of the post-deformed sample: (a) TEM micrograph exhibiting cellular structure, the SAED of the red and blue regions are on the right; (b) TEM micrograph presenting dislocations piled up at the interfaces and the slip traces crossing through multiple phases.
Fig. 10. (a) Tensile properties of SLM-ed AlCoCrFeNi2.1 in comparison with the previously reported AlCoCrFeNi2.1 fabricated by other processes and other HEAs produced by SLM. (b) A complex fan blade of AlCoCrFeNi2.1 manufactured via SLM.
[1] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
[2] |
Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
[3] |
M. Wang, Y. Lu, T. Wang, C. Zhang, Z. Cao, T. Li, P.K. Liaw, Scr. Mater. 204 (2021) 114132.
DOI URL |
[4] |
X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[5] |
T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, L.T. Clark, T. Okawa, I.S. Wani, P.P. Bhattacharjee, A. Shibata, N. Tsuji, Mater. Chem. Phys. 210 (2018) 207-212.
DOI URL |
[6] |
Y. Zhang, X. Wang, J. Li, Y. Huang, Y. Lu, X. Sun, Mater. Sci. Eng. A 724 (2018) 148-155.
DOI URL |
[7] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[8] |
P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 489.
DOI URL |
[9] |
J. Wang, Z. Long, P. Jiang, Y. Fautrelle, X. Li, Metall. Mater. Trans. A 51 (2020) 3504-3517.
DOI URL |
[10] | L. Wang, C. Yao, J. Shen, Y. Zhang, T. Wang, Y. Ge, L. Gao, G. Zhang, Inter- metallics 118 (2020) 106681. |
[11] |
H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, Intermetallics 113 (2019) 106569.
DOI URL |
[12] |
R. John, A. Karati, J. Joseph, D. Fabijanic, B.S. Murty, J. Alloys Compd. 835 (2020) 155424.
DOI URL |
[13] |
P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.F. Lim, C.N. Sun, J. Wei, D. Chi, Mater. Des. 112 (2016) 290-299.
DOI URL |
[14] |
P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, J. Alloys Compd. 707 (2017) 287-290.
DOI URL |
[15] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125 (2017) 390-400.
DOI URL |
[16] | L. Delcuse, S. Bahi, U. Gunputh, A. Rusinek, P. Wood, M.H. Miguelez, Addit. Manuf. 36 (2020) 101339. |
[17] |
A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Mater. Lett. 224 (2018) 22-25.
DOI URL |
[18] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
[19] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloys Compd. 746 (2018) 125-134.
DOI URL |
[20] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[21] |
S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, J. Alloys Compd. 771 (2019) 387-397.
DOI URL |
[22] | P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Inter- metallics 104 (2019) 24-32. |
[23] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloys Compd. 784 (2019) 195-203.
DOI URL |
[24] | A .O. Moghaddam N.A. Shaburova M.N. Samodurova A. Abdollahzadeh E.A. Trofimov J. Mater. Sci. Technol. 77 (2021) 131-162. |
[25] | P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci.Technol. 43 (2020) 40-43. |
[26] |
C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Adv. Mater. 32 (2020) 1903855.
DOI URL |
[27] |
R.J. Vikram, B.S. Murty, D. Fabijanic, S. Suwas, J. Alloys Compd. 827 (2020) 154034.
DOI URL |
[28] | Y. Zhu, S. Zhou, Z. Xiong, Y.J. Liang, Y. Xue, L. Wang, Addit. Manuf. 39 (2021) 101901. |
[29] | S. Luo, C. Zhao, Y. Su, Q. Liu, Z. Wang, Addit. Manuf. 31 (2020) 100925. |
[30] |
S. Luo, Y. Su, Z. Wang, Sci. China Mater. 63 (2020) 1279-1290.
DOI URL |
[31] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Intermetallics 84 (2017) 42-51.
DOI URL |
[32] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[33] |
Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, K. Li, Intermetallics 120 (2020) 106746.
DOI URL |
[34] |
M.R. Rahul, S. Samal, S. Venugopal, G. Phanikumar, J. Alloys Compd. 749 (2018) 1115-1127.
DOI URL |
[35] |
K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625 (2015) 221-229.
DOI URL |
[36] |
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurova, J. Mater, Process. Technol. 213 (2013) 606-613.
DOI URL |
[37] |
M. Ma, Z. Wang, M. Gao, X. Zeng, J. Mater, J. Mater. Process. Tech. 215 (2015) 142-150.
DOI URL |
[38] |
K. Kempen, L. Thijs, J.V. Humbeeck, J.P. Kruth, Phys. Procedia 39 (2012) 439-446.
DOI URL |
[39] |
K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Mater. Sci. Eng. A 590 (2014) 153-160.
DOI URL |
[40] | X. Liu, X. Zhou, B. Xu, J. Ma, C. Zhao, Z. Shen, W. Liu, Materials 12 (2019) 1204 (Basel). |
[41] |
K.G. Prashanth, J. Eckert, J. Alloys Compd. 707 (2017) 27-34.
DOI URL |
[42] |
M.D. Rinaldi, R.M. Sharp, M.C. Flemings, Metall. Trans. 3 (1972) 3139-3148.
DOI URL |
[43] | J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci.Technol. 35 (2019) 270-284. |
[44] |
N. Chakraborty, Appl. Therm. Eng. 29 (2009) 3618-3631.
DOI URL |
[45] |
A.I. Mizev, D. Schwabe, Phys. Fluids 21 (2009) 112102.
DOI URL |
[46] |
Y.H. Siao, C.D. Wen, Comput. Mater. Sci. 193 (2021) 110388.
DOI URL |
[47] | T. Xiong, W. Yang, S. Zheng, Z. Liu, Y. Lu, R. Zhang, Y. Zhou, X. Shao, B. Zhang, J. Wang, F. Yin, P.K. Liaw, X. Ma, J. Mater. Sci.Technol. 65 (2021) 216-227. |
[48] | D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Addit. Manuf. 32 (2020) 101058. |
[49] |
Y. Brif, M. Thomas, I. Todd, Scr. Mater. 99 (2015) 93-96.
DOI URL |
[50] | R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Inter- metallics 94 (2018) 165-171. |
[51] | T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, Addit. Manuf. 25 (2019) 412-420. |
[52] |
T. Xiong, S. Zheng, J. Pang, X. Ma, Scr. Mater. 186 (2020) 336-340.
DOI URL |
[53] |
S.R. Reddy, S. Yoshida, U. Sunkari, A. Lozinko, J. Joseph, R. Saha, D. Fabijanic, S. Guo, P.P. Bhattacharjee, N. Tsuji, Mater. Sci. Eng. A 764 (2019) 138226.
DOI URL |
[54] |
S.R. Reddy, S. Yoshida, T. Bhattacharjee, N. Sake, A. Lozinko, S. Guo, P.P. Bhat- tacharjee, N. Tsuji, Sci. Rep. 9 (2019) 11505.
DOI PMID |
[55] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. 675 (2016) 99-109.
DOI URL |
[1] | Bohong Zhang, Jie Chen, Pengfei Wang, Bingtao Sun, Yu Cao. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique [J]. J. Mater. Sci. Technol., 2022, 111(0): 111-119. |
[2] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[3] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[4] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[5] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[6] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[7] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[8] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[9] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[10] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[11] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[12] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[13] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[14] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[15] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||