J. Mater. Sci. Technol. ›› 2022, Vol. 106: 257-269.DOI: 10.1016/j.jmst.2021.07.043
• Research Article • Previous Articles
Xue Yana, Cheng Zhanga,b,*(), Yangshuai Lic, Youjian Yic, Ziruo Cuid, Bingyuan Hane
Received:
2021-03-22
Revised:
2021-06-15
Accepted:
2021-07-09
Published:
2022-04-20
Online:
2021-10-08
Contact:
Cheng Zhang
About author:
*E-mail address:Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China. E-mail address: zhangcheng@siom.ac.cn (C. Zhang).Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD[J]. J. Mater. Sci. Technol., 2022, 106: 257-269.
Mn | Si | Cr | Cu | Ni | Mo | Nb | Ti | V | Impurity | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1.10-1.7 | ≤ 0.60 | ≤ 0.30 | ≤ 0.30 | ≤ 0.30 | ≤ 0.08 | ≤ 0.04 | ≤ 0.03 | ≤ 0.02 | ≤ 0.257 | Bal. |
Table 1. Chemical composition of P355GH structural steel (wt.%).
Mn | Si | Cr | Cu | Ni | Mo | Nb | Ti | V | Impurity | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1.10-1.7 | ≤ 0.60 | ≤ 0.30 | ≤ 0.30 | ≤ 0.30 | ≤ 0.08 | ≤ 0.04 | ≤ 0.03 | ≤ 0.02 | ≤ 0.257 | Bal. |
Ni | Cr | Al | Co | Mo | Ti | Y |
---|---|---|---|---|---|---|
30.00 | 25.00 | 15.00 | 15.00 | 5.0 | 5.00 | 5.00 |
Table 2. Chemical composition of HEA powder (wt.%).
Ni | Cr | Al | Co | Mo | Ti | Y |
---|---|---|---|---|---|---|
30.00 | 25.00 | 15.00 | 15.00 | 5.0 | 5.00 | 5.00 |
Fig. 1. Powder preparation, and SPD and laser-induced topology optimization method: (a) flowchart of UASM powder preparation; (b) SPD system; (c) technological process of laser-induced topology optimizing.
Parameters | Values |
---|---|
Air Pressure (PSI) | 80-90 |
C3H8 Pressure (PSI) | 60-75 |
Ar Pressure (MPa) | 30-40 |
H2 Flowrate (L/min) | 30-40 |
Powder Speed (r/min) | 5-10 |
Spray Speed (mm/s) | 1000-2000 |
Spray Distance (mm) | 200-250 |
Table 3. SPD parameters.
Parameters | Values |
---|---|
Air Pressure (PSI) | 80-90 |
C3H8 Pressure (PSI) | 60-75 |
Ar Pressure (MPa) | 30-40 |
H2 Flowrate (L/min) | 30-40 |
Powder Speed (r/min) | 5-10 |
Spray Speed (mm/s) | 1000-2000 |
Spray Distance (mm) | 200-250 |
Parameters | Values |
---|---|
Focal length (mm) | 400 |
Defocusing amount (nm) | +600 |
Laser wavelength (nm) | 1070 ± 5 |
Spot diameter (mm) | 3 |
Particle size (mesh) | 200-600 |
Laser-surface distance (mm) | 900 |
Scanning speed (mm/s) | 2 |
Overlap ratio (%) | 50 |
Gas velocity (L/min) | 6 |
Fiber core diameter (μm) | 100 |
Laser power (W) | 1200-1800 |
Table 4. Parameters employed in the laser-induced topology optimization process.
Parameters | Values |
---|---|
Focal length (mm) | 400 |
Defocusing amount (nm) | +600 |
Laser wavelength (nm) | 1070 ± 5 |
Spot diameter (mm) | 3 |
Particle size (mesh) | 200-600 |
Laser-surface distance (mm) | 900 |
Scanning speed (mm/s) | 2 |
Overlap ratio (%) | 50 |
Gas velocity (L/min) | 6 |
Fiber core diameter (μm) | 100 |
Laser power (W) | 1200-1800 |
Fig. 2. Ab-initio molecular dynamics model of the SPD and LTO-HEA coatings: (a, b) line and ball and stick model of the SPD unit cell; (c, d) line model ball and stick model of the SPD supercell; (e, f) line and ball and stick model of the SPD+LTO supercell; (g) Forcite dynamics energies; (h) Forcite dynamics temperature.
Atom | X | y | z | Uiso | Occ. |
---|---|---|---|---|---|
Ni | 0.1045 | 0.065 | 0.045 | 0.0178 | 1 |
Cr | 0.1045 | 0.581 | 0.381 | 0.0134 | 1 |
Al | 0.1045 | 0.35847 | 0.0658 | 0.0376 | 1 |
Co | 0.378 | 0.0006 | 0.1847 | 0.0458 | 1 |
Mo | 0.151 | 0.0088 | 0.9474 | 0.0263 | 1 |
Ti | 0.0683 | 0.6884 | 0.378 | 0.0761 | 1 |
Y | 0.157 | 0.2867 | 0.845 | 0.0573 | 1 |
Table 5. Crystal structure parameters of the Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating.
Atom | X | y | z | Uiso | Occ. |
---|---|---|---|---|---|
Ni | 0.1045 | 0.065 | 0.045 | 0.0178 | 1 |
Cr | 0.1045 | 0.581 | 0.381 | 0.0134 | 1 |
Al | 0.1045 | 0.35847 | 0.0658 | 0.0376 | 1 |
Co | 0.378 | 0.0006 | 0.1847 | 0.0458 | 1 |
Mo | 0.151 | 0.0088 | 0.9474 | 0.0263 | 1 |
Ti | 0.0683 | 0.6884 | 0.378 | 0.0761 | 1 |
Y | 0.157 | 0.2867 | 0.845 | 0.0573 | 1 |
Fig. 3. Corrosion electrochemistry model and simulation of the SPD and SPD+LTO-HEA coatings: (a) passivated LTO-HEA coating model; (b) corrosion electrochemistry model of SPD supercell; (c) corrosion electrochemistry line model of the SPD+LTO supercell; (d) corrosion electrochemistry ball and stick model of the SPD+LTO supercell.
Fig. 4. Morphology and size distribution of spherical Ni30Cr25Al15Co15Mo5Ti5Y5 powders: (a) Powder morphology; (b) Adherent particles; (c) Size distribution of the alloy powders.
Fig. 5. Microstructure of the Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating fabricated via SPD: (a) SEM morphology; (b) AFM image; (c) EDS spectra; (d) SPD-HEA coating interface; (e) EDS line-scan across interface.
Ni | Cr | Al | Co | Mo | Ti | Y | Fe | O |
---|---|---|---|---|---|---|---|---|
31.45 | 23.67 | 10.37 | 15.04 | 5.43 | 4.89 | 4.75 | 3.26 | 1.14 |
Table 6. EDS analysis results of the SPD-HEA coating (wt.%).
Ni | Cr | Al | Co | Mo | Ti | Y | Fe | O |
---|---|---|---|---|---|---|---|---|
31.45 | 23.67 | 10.37 | 15.04 | 5.43 | 4.89 | 4.75 | 3.26 | 1.14 |
Fig. 6. Microstructure of the SPD+LTO Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating: (a) SEM morphology; (b) AFM images; (c) EDS spectra; (d) LTO-HEA coating interface; (e) EDS line-scan.
Ni | Cr | Al | Co | Mo | Ti | Y | Fe | O |
---|---|---|---|---|---|---|---|---|
30.94 | 22.87 | 10.91 | 14.63 | 5.72 | 4.04 | 4.85 | 5.37 | 0.67 |
Table 7. EDS analysis results of the LTO-HEA coating (wt.%).
Ni | Cr | Al | Co | Mo | Ti | Y | Fe | O |
---|---|---|---|---|---|---|---|---|
30.94 | 22.87 | 10.91 | 14.63 | 5.72 | 4.04 | 4.85 | 5.37 | 0.67 |
Coatings | Sa /nm | Sq /nm | Ssk | Sku | Sy /nm | Sz /nm |
---|---|---|---|---|---|---|
SPD | 831.5 | 124.2 | 0.52 | 4.95 | 1512 | 672 |
LTO | 113.7 | 62.5 | 0.08 | 0.79 | 204 | 78 |
Table 8. AFM analysis parameters of the SPD and LTO coatings.
Coatings | Sa /nm | Sq /nm | Ssk | Sku | Sy /nm | Sz /nm |
---|---|---|---|---|---|---|
SPD | 831.5 | 124.2 | 0.52 | 4.95 | 1512 | 672 |
LTO | 113.7 | 62.5 | 0.08 | 0.79 | 204 | 78 |
Fig. 7. EBSD grain analysis of the substrate and LTO and SPD-HEA coatings: (a) EBSD system; (b) EBSD probe; (c) Substrate; (d) SPD coating; (e) LTO coating; (f) Substrate distribution; (g) SPD coating distribution; (h) LTO coating distribution.
Fig. 9. DSC and XRD phase and TEM images of the coating grains along with a selected-area electron diffraction pattern: (a) DSC thermal analysis of LTO coatings; (b) XRD data of SPD and LTO coatings; (c) SPD bright-field TEM; (d) LTO bright-field TEM; (e) LTO high-resolution lattice fringe image.
Fig. 11. Mechanical properties and fatigue damage of the substrate and SPD and LTO-HEA coatings: (a) residual stress of substrate; (b) residual stress of SPD coating; (c) residual stress of LTO coating; (d) Stress vs. strain responses; (e) mechanical parameters; (f) fatigue damage vs. stress curves.
Fig. 12. Corrosion electrochemistry of the SPD+LTO Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating: (a) electrochemical corrosion of SPD coating; (b) electrochemical corrosion of LTO coating; (c) polarization curves; (d) Nyquist impedance spectra; (e) Bode spectra of SPD coating; (f) Bode spectra of LTO coating.
Ecorr/V | icorr/mA/cm2 | RSP/Ω | Epass/V | log(ipass)/mA/cm2 | bc/mV/dec. | ba/mV/dec. | Vcorr/mm/a | |
---|---|---|---|---|---|---|---|---|
Al-Ni coating | -0.727 | 6.300 | - | - | - | -0.0933 | 0.0682 | 0.0248 |
AlNiCoCrY2O3 coating | -0.762 | 1.400 | 2095 | -0.566 ± 0.05 | -4.514 ± 0.01 | -0.1431 | 0.1240 | 0.0045 |
Substrate | -0.890 | -4.092 | - | - | - | -0.101 | 0.071 | 0.0582 |
SPD coating | -0.757 | -5.215 | 1076 | - | - | -0.073 | 0.166 | 0.0257 |
LTO coating | -0.258 | -8.0011 | 4059 | 0.0447 ± 0.01 | -6.177 ± 0.50 | -0.057 | 0.0793 | 0.0032 |
Table 9. Technological parameters of electrochemical corrosion testing.
Ecorr/V | icorr/mA/cm2 | RSP/Ω | Epass/V | log(ipass)/mA/cm2 | bc/mV/dec. | ba/mV/dec. | Vcorr/mm/a | |
---|---|---|---|---|---|---|---|---|
Al-Ni coating | -0.727 | 6.300 | - | - | - | -0.0933 | 0.0682 | 0.0248 |
AlNiCoCrY2O3 coating | -0.762 | 1.400 | 2095 | -0.566 ± 0.05 | -4.514 ± 0.01 | -0.1431 | 0.1240 | 0.0045 |
Substrate | -0.890 | -4.092 | - | - | - | -0.101 | 0.071 | 0.0582 |
SPD coating | -0.757 | -5.215 | 1076 | - | - | -0.073 | 0.166 | 0.0257 |
LTO coating | -0.258 | -8.0011 | 4059 | 0.0447 ± 0.01 | -6.177 ± 0.50 | -0.057 | 0.0793 | 0.0032 |
[1] |
S. Katnagallu, S. Vernier, M.A. Charpagne, B. Gault, N. Bozzolo, P. Kontis, Scr. Mater. 191 (2021) 7-11.
DOI URL |
[2] |
J.W. Bae, J. Lee, A. Zargaran, H.S. Kim, Scr. Mater. 194 (2021) 113653.
DOI URL |
[3] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
[4] |
D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K.T. Moller, T.C. Hansen, J. Bednarcik, M. Paskevicius, M.H. Sorby, T.R. Jensen, U. Jansson, M. Sahlberg, Inorg. Chem. 57 (2018) 2103-2110.
DOI PMID |
[5] |
G. Qin, R.R. Chen, H.H. Mao, Y. Yan, X.J. Li, S. Schönecker, L. Vitos, X.Q. Li, Acta Mater 208 (2021) 116763.
DOI URL |
[6] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[7] |
Z. Cheng, L. Yang, W.H. Mao, Z.K. Huang, D.S. Liang, B. He, F.Z. Ren, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 805 (2021) 140544.
DOI URL |
[8] |
J.T. Hu, J.J. Zhang, H.Y. Xiao, L. Xie, H.H. Shen, P.C. Li, J.W. Zhang, H.F. Gong, X.T. Zu, Inorg. Chem. 59 (2020) 9774-9782.
DOI URL |
[9] | S.T. Zhao, Z.Z. Li, C.Y. Zhu, W. Yang, Z.R. Zhang, D.E.J. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Sci. Adv. 7 (2021) 3108-3137. |
[10] |
R. Mahjoub, K.J. Laws, M. Ferry, Acta Mater 131 (2017) 131-140.
DOI URL |
[11] |
D. Banerjee, S. Mukherjee, K.K. Chattopadhyay, Carbon 48 (2010) 1025-1031.
DOI URL |
[12] |
Y.Z. Lu, S. Su, S.B. Zhang, Y.J. Huang, Z.X. Qin, X. Lu, W. Chen, Acta Mater 206 (2021) 116632.
DOI URL |
[13] |
C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M.B. Wilms, R. Streubel, I.M. Ku-soglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J.H. Schleifen-baum, F. Walther, B. Gault, B. Gökce, Acta Mater 206 (2021) 116566.
DOI URL |
[14] |
H.Y. Song, Y.P. Wang, C. Esling, G.D. Wang, H.T. Liu, Acta Mater 206 (2021) 116611.
DOI URL |
[15] |
V. Leffler, S. Ehlert, B. Forster, M. Dulle, S. Forster, ACS nano 15 (2021) 840-856.
DOI URL |
[16] |
D.J. Hynek, R.M. Singhania, S.Y. Xu, B. Davis, L.Z. Wang, M. Yarali, J.V. Pondick, J.M. Woods, N.C. Strandwitz, J.J. Cha, ACS nano 15 (2021) 410-418.
DOI URL |
[17] |
C.Y. Lee, Z.H. Stachurski, T.R. Welberry, Acta Mater 58 (2010) 615-625.
DOI URL |
[18] |
M.L. Meyerson, P.E. Papa, A. Heller, C.B. Mullins, ACS nano 15 (2021) 29-46.
DOI PMID |
[19] |
G. Yoon, K. Kim, S.U. Kim, S. Han, H. Lee, J. Rho, ACS nano 15 (2021) 698-706.
DOI URL |
[20] |
S.B. Gao, Z.H. Hu, M. Duchamp, P.S.S.R. Krishnan, S. Tekumalla, X. Song, M. Seita, Acta Mater 200 (2020) 366-377.
DOI URL |
[21] |
D.H. Zhang, D.J. Kong, Appl. Surf. Sci. 457 (2018) 69-82.
DOI URL |
[22] |
D.H. Zhang, D.J. Kong, J. Alloy. Compd. 735 (2018) 1-12.
DOI URL |
[23] |
J. Jarrett, M. King, R.J. Gray, N. Neumann, L. Dohl, C.D. Baird, T. Ebert, M. Hesse, A. Tebartz, D.R. Rusby, N.C. Woolsey, D. Neely, M. Roth, P. McKenna, High Power Laser Sci. Eng. 7 (2019) e2.
DOI URL |
[24] |
C.D. Armstrong, C.M. Brenner, C. Jones, D.R. Rusby, Z.E. Davidson, Y. Zhang, J. Wragg, S. Richards, C. Spindloe, P. Oliveira, M. Notley, R. Clarke, S.R. Mirfayzi, S. Kar, Y. Li, T. Scott, P. Mckenna, D. Neely, High Power Laser Sci. Eng. 7 (2019) e24.
DOI URL |
[25] |
C.Y. Su, B.L. Shen, X.Q. Xu, C.S. Xia, B.L. Pan, High Power Laser Sci. Eng. 7 (2019) e44.
DOI URL |
[26] |
H. Liu, G.Q. Liao, Y.H. Zhang, B.J. Zhu, Z. Zhang, Y.T. Li, G.G. Scott, D. Rusby, C. Armstrong, E. Zemaityte, P. Bradford, N. Woolsey, P. Huggard, P. McKenna, D. Neely, High Power Laser Sci. Eng. 7 (2019) e6.
DOI URL |
[27] |
G. Xia, W. Fan, D.J. Huang, H. Cheng, J.T. Guo, X.Q. Wang, High Power Laser Sci. Eng. 7 (2019) e9.
DOI URL |
[28] |
A. Hanuka, K.P. Wootton, Z. Wu, K. Soong, I.V. Makasyuk, R.J. England, L. Schachter, High Power Laser Sci. Eng. 7 (2019) e7.
DOI URL |
[29] |
W. Lin, D.H. Chen, S.C. Chen, Photonics Res 8 (2020) 1827-1842.
DOI URL |
[30] | T. Takahashi, H. Nakabayashi, Thin Solid Films 420 (2002) 433-437. |
[31] |
H.J. Xu, Y.B. Xu, Y.L. He, H.T. Jiao, S. Yue, J.P. Li, J. Alloys Compd. 861 (2021) 158550.
DOI URL |
[32] |
M. Liu, H.F. Gong, W.G. Liu, R.D. Liu, J.Q. Cao, J. Nucl. Mater. 545 (2021) 152747.
DOI URL |
[33] |
D. Hachet, S. Gorsse, S. Godet, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 802 (2021) 140452.
DOI URL |
[34] |
R.R. Xu, H. Li, M.Q. Li, J. Alloys Compd. 844 (2020) 156089.
DOI URL |
[35] | L.F. Peng, Z.T. Xu, Z.Y. Gao, M.W. Fu, Int. J. Mech. Sci. 139-139 (2018) 74-85. |
[36] |
S. Biswas, D. Schwen, H. Wang, M. Okuniewski, V. Tomar, Comput. Mater. Sci. 148 (2018) 307-319.
DOI URL |
[37] |
T.Y. Chen, L.Z. Tan, Z.Z. Lu, H.X. Xu, Acta Mater 138 (2017) 83-91.
DOI URL |
[38] |
W.R. Li, J.J. Hao, W. Liu, S.H. Mu, J. Alloys Compd. 853 (2021) 157158.
DOI URL |
[39] |
Q. Yang, L.R. Zhao, Mater. Charact. 59 (2008) 1285-1291.
DOI URL |
[40] |
W.R. Wang, L.H. Yuan, Y. Li, M.Y. Yang, W.F. Zhang, Vacuum 177 (2020) 109371.
DOI URL |
[41] |
H.D. Kweon, J.W. Kim, O. Song, D. Oh, Nucl. Eng. Technol. 53 (2021) 647-656.
DOI URL |
[42] | P.W. Bridgman, Harvard University Press, USA, 1964. |
[43] | N.E. Dowling, Pearson Education, England, 2012. |
[44] | R.G. Mani, J.H. Smet, K.V. Klitzing, V. Narayanamurti, W.B. Johnson, V. Umansky, Cheminform 34 (2003) 1-6. |
[45] |
J. Woods, E. Kozubal, Int. J. Heat Mass Transfer 122 (2018) 324-340.
DOI URL |
[46] | J. Liu, L.W. Zhang, X.L. Mu, P.Q. Zhang, Prog. Org. Coat. 111 (2017) 315-321. |
[47] |
S. Skale, V. Dole ˇcek, M. Slemnik, Corrosion Sci 49 (2007) 1045-1055.
DOI URL |
[48] |
A. Börger, E. Ebner, S. Calles, H. Budde-Meiwes, D. Schulte, J. Kowal, D.U. Sauer, J. Energy Storage 13 (2017) 457-462.
DOI URL |
[49] |
J. Wen, H.Z. Cui, N. Wei, X.J. Song, G.S. Zhang, C.M. Wang, Q. Song, J. Alloy. Compd. 695 (2017) 2424-2433.
DOI URL |
[50] |
C.C. Hu, T.W. Tsou, Electrochem. Commun. 4 (2002) 105-109.
DOI URL |
[51] |
S. Arthanari, J.C. Jang, S.K. Seon, J. Alloy. Compd. 749 (2018) 146-154.
DOI URL |
[52] |
M. Itagaki, R. Nozue, K. Watanabe, H. Katayama, K. Noda, Corrosion Sci 46 (2004) 1301-1310.
DOI URL |
[1] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[2] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[3] | Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation [J]. J. Mater. Sci. Technol., 2019, 35(3): 334-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||