J. Mater. Sci. Technol. ›› 2022, Vol. 116: 199-213.DOI: 10.1016/j.jmst.2021.10.036
• Research Article • Previous Articles Next Articles
Y.F. Zhao, H.H. Chen(), D.D. Zhang, J.Y. Zhang(
), Y.Q. Wang, K. Wu, G. Liu(
), J. Sun
Received:
2021-07-02
Revised:
2021-09-25
Accepted:
2021-10-07
Published:
2022-01-29
Online:
2022-07-26
Contact:
H.H. Chen,J.Y. Zhang,G. Liu
About author:
lgsammer@mail.xjtu.edu.cn (G. Liu).Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu[J]. J. Mater. Sci. Technol., 2022, 116: 199-213.
Fig. 1. XRD patterns for Fe50Mn30Co10Cr10/Cu and Fe50Mn30Co10Ni10/Cu NLs with different layer thicknesses h: (a, d) before irradiation; (b, e) after irradiation. (c, f) A comparison of XRD profiles between as-deposited and irradiated HEA/Cu NLs.
Fig. 2. Typically cross-sectional TEM images of (a, b) h = 10 nm and (c, d) h = 100 nm Fe50Mn30Co10Cr10/Cu NLs and (e, f) h = 10 nm and (g, h) h = 100 nm Fe50Mn30Co10Ni10/Cu NLs. The corresponding SADPs are inserted in (a, c, e, g). (b, d) HRTEM images show coherent interfaces, while the corresponding FFT image of the boxed regions in (d) displays the HCP phase in FMCC layers. (f, h) HRTEM images show the coherent interface between Cu and FMCN layers. The STEM images inserted in (a, e) show modulated nanolayered structure.
h (nm) | FMCC/Cu NLs | FMCN/Cu NLs | ||||||
---|---|---|---|---|---|---|---|---|
Twin's fraction PT (%) | Twin thickness lT (nm) | Twin's fraction PT (%) | Twin thickness lT (nm) | |||||
PTall | PTCu | lall | lCu | PTall | PTCu | lall | lCu | |
5 | 62.5±3.1 | - | 5.3±1.8 | - | 71.7±4.5 | - | 5.5±1.5 | - |
10 | 60.4±4.9 | - | 5.1±1.5 | - | 71.5±5.7 | - | 5.6±1.3 | - |
25 | - | 40.6±2.1 | - | 5.5±1.4 | 72.8±3.1 | - | 5.2±1.8 | - |
50 | - | 48.9±3.1 | - | 7.6±1.8 | - | 50.3±2.3 | - | 8.3±2.1 |
100 | - | 50.7±4.0 | - | 8.0±1.3 | - | 54.8±5.9 | - | 10.9±1.6 |
150 | - | 51.4±2.3 | - | 9.5±1.8 | - | 56.1±3.6 | - | 11.2±1.2 |
Table 1. Statistical result of twin thickness and twin's fraction in FMCC/Cu and FMCN/Cu NLs.
h (nm) | FMCC/Cu NLs | FMCN/Cu NLs | ||||||
---|---|---|---|---|---|---|---|---|
Twin's fraction PT (%) | Twin thickness lT (nm) | Twin's fraction PT (%) | Twin thickness lT (nm) | |||||
PTall | PTCu | lall | lCu | PTall | PTCu | lall | lCu | |
5 | 62.5±3.1 | - | 5.3±1.8 | - | 71.7±4.5 | - | 5.5±1.5 | - |
10 | 60.4±4.9 | - | 5.1±1.5 | - | 71.5±5.7 | - | 5.6±1.3 | - |
25 | - | 40.6±2.1 | - | 5.5±1.4 | 72.8±3.1 | - | 5.2±1.8 | - |
50 | - | 48.9±3.1 | - | 7.6±1.8 | - | 50.3±2.3 | - | 8.3±2.1 |
100 | - | 50.7±4.0 | - | 8.0±1.3 | - | 54.8±5.9 | - | 10.9±1.6 |
150 | - | 51.4±2.3 | - | 9.5±1.8 | - | 56.1±3.6 | - | 11.2±1.2 |
Fig. 3. (a, e) Representative STEM images of the deformed microstructure underneath the indenter in the as-deposited Fe50Mn30Co10Cr10/Cu and Fe50Mn30Co10Ni10/Cu NLs with h = 25 nm. (b, f) The SADPs of indented (on the left) and as-deposited (on the right) samples. (c, g) Typical TEM images of the deformed microstructure underneath the indenter with twins indicated by arrows. (d, h) Typical HRTEM images of the indented region, showing the presence of nanotwins after deformation.
Fig. 4. (a) Cross-sectional TEM image for Fe50Mn30Co10Cr10/Cu NLs with h = 100 nm after He irradiation. The SADP of the irradiated region shows the unchanged crystallographic orientation of the two constituents. Superimposed on image (a) is the He concentration vs. penetration depth profile simulated by SRIM. (b-d2) Magnified views of the irradiated boxed regions in (a) show the distribution of He bubbles indicated by white arrows. The corresponding FFT image of the boxed regions in (d1) shows the HCP phase in FMCC layers. Images (e) and (f) show the distribution of He bubbles of h = 5 nm samples. Images (d1, e) are captured in the condition of under-focus 0 nm and images (b, c, d2, f) are captured in the condition of under-focus 250 nm to clearly show the He bubbles.
Fig. 5. (a) A cross-sectional TEM image of irradiated Fe50Mn30Co10Ni10/Cu NLs of h = 100 nm with embedded He concentration profile. The corresponding SADP inserted in (a) exhibits (111) and (200) textures after irradiation. (b, c) HRTEM images of the boxes b and c labeled in (a) at different penetration depths, showing bubbles are randomly distributed in Cu and FMCN layers. (d) A TEM image of irradiated Fe50Mn30Co10Ni10/Cu NLs h = 150 nm showing numerous bubble chains at grain boundary in Cu, as indicated by arrows. (e) A HRTEM image shows the distribution of He bubbles in h = 5 nm samples.
Fig. 6. Representative TEM images of the deformed microstructure underneath the indenter in (a) Fe50Mn30Co10Cr10/Cu and (e) Fe50Mn30Co10Ni10/Cu NLs with h = 25 nm after irradiation. (b, f) Typical SADPs of the indented (on the left) and irradiated (on the right) samples. (c, g) Typical HRTEM images of the indented regions, showing the presence of nanotwins after deformation. (d, h) Typical HRTEM images of the indented regions, showing the He bubbles.
Fig. 7. Statistical results on He bubbles in irradiated Fe50Mn30Co10Cr10/Cu NLs. The average bubble diameter and bubble spacing, bubble density as a function of h in Cu layer (a, c) and in FMCC layer (b, d) respectively.
Fig. 8. Statistical results on the parameters of He bubbles in the irradiated Fe50Mn30Co10Ni10/Cu NLs. The average bubble diameter and bubble spacing, bubble density as a function of h in Cu layer (a, c) and in FMCN layer (b, d), respectively.
Fig. 9. Swelling is estimated based on the bubble densities and sizes. In the FMCC/Cu NLs, the magnitude of swelling increases with increasing h. In the FMCN/Cu NLs, the magnitude of swelling increases with h increasing from 5 nm to 25 nm. When h ≥ 50 nm, swelling does not change significantly.
Fig. 10. (a, c) The load-depth curves of as-deposited Fe50Mn30Co10Cr10/Cu and Fe50Mn30Co10Ni10/Cu NLs at the same strain rate of 0.05 s-1 with different h, respectively; (b, d) the load-depth curves of irradiated Fe50Mn30Co10Cr10/Cu and Fe50Mn30Co10Ni10/Cu NLs with different h, respectively.
Fig. 11. The measured hardness H as a function of h for (a) Fe50Mn30Co10Cr10/Cu and (c) Fe50Mn30Co10Ni10/Cu NLs. Calculations on the h-dependent irradiation hardening from different mechanistic models are depicted for (b) Fe50Mn30Co10Cr10/Cu and (d) Fe50Mn30Co10Ni10/Cu NLs. More details can be referred to in the text.
Fig. 12. A comparison of the irradiation hardening as a function of h among the present Fe50Mn30Co10Cr10/Cu NLs, Fe50Mn30Co10Ni10/Cu NLs and other reported NLs systems Mo/Cu [28], V/Cu [29], V/Ag [30], Ni/Ag [33], Cu/Zr [34], Mo/Zr [36] and Nb/Zr [37] NLs with different interfacial structures.
Fig. 13. The measured hardness H as a function of strain rate for (a) as-deposited and irradiated FMCC/Cu NLs with different h and (b) as-deposited and irradiated FMCN/Cu NLs with different h. The slope of each line represents the strain rate sensitivity index m. The strain rate sensitivity m of (c) FMCC/Cu and (d) FMCN/Cu NLs as a function of h.
[1] |
I.J. Beyerlein, M.J. Demkowicz, A. Misra, B.P. Uberuaga, Prog. Mater. Sci. 74 (2015) 125-210.
DOI URL |
[2] |
X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, M. Nastasi, Prog. Mater. Sci. 96 (2018) 217-321.
DOI URL |
[3] |
S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758.
DOI URL |
[4] |
T.N. Yang, C. Lu, K. Jin, M.L. Crespillo, Y. Zhang, H. Bei, L. Wang, J. Nucl. Mater. 488 (2017) 328-337.
DOI URL |
[5] |
C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Y. Dong, L. Wang, Acta Mater. 127 (2017) 98-107.
DOI URL |
[6] |
C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.R. He, I.M. Robertson, W.J. Weber, L. Wang, Nat. Commun. 7 (2016) 13564.
DOI URL |
[7] |
Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Nat. Commun. 6 (2015) 8736.
DOI URL |
[8] |
G. Pu, L. Lin, R. Ang, K. Zhang, B. Liu, B. Liu, T. Peng, S. Liu, Q. Li, Appl. Surf. Sci. 516 (2020) 146129.
DOI URL |
[9] | W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, X.-Q. Chen, J. Mater. Sci. Technol. 34 (2018) 355-364. |
[10] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[11] |
Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 7748.
DOI PMID |
[12] |
Z. An, S. Mao, Y. Liu, H. Zhou, Y. Zhai, Z. Tian, C. Liu, Z. Zhang, X. Han, J. Mater. Sci. Technol. 92 (2021) 195-207.
DOI URL |
[13] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83.
DOI URL |
[14] |
J. Li, H. Chen, Q. Fang, C. Jiang, Y. Liu, P.K. Liaw, Inter. J. Plast. 133 (2020) 102819.
DOI URL |
[15] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[16] |
H. Li, H. Jing, L. Xu, Y. Han, L. Zhao, Z. Tang, B. Xiao, Y. Zhang, Inter. J. Plast. 118 (2019) 105-129.
DOI URL |
[17] |
Z. Wang, C. Wang, Y.-L. Zhao, Y.-C. Hsu, C.-L. Li, J.-J. Kai, C.-T. Liu, C.-H. Hsueh, Int. J. Plast. 131 (2020) 102726.
DOI URL |
[18] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[19] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (5) (2004) 299-303.
DOI URL |
[20] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61 (2014) 1-93.
DOI URL |
[21] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[22] |
Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114 (2019) 161-173.
DOI URL |
[23] |
M. Bahramyan, R.T. Mousavian, D. Brabazon, Int. J. Plast. 127 (2020) 102649.
DOI URL |
[24] |
S.M. Vakili, A. Zarei-Hanzaki, A.S. Anoushe, H.R. Abedi, M.H. Mohammad-E- brahimi, M. Jaskari, S.S. Sohn, D. Ponge, L.P. Karjalainen, Acta Mater. 185 (2020) 474-492.
DOI URL |
[25] |
S.Q. Xia, W. Zheng, T.F. Yang, Y. Zhang, J. Iron Steel Res. Int. 22 (2015) 879-884.
DOI URL |
[26] | N. Li, M. Nastasi, A. Misra, Int. J. Plast. 32-33 (2012) 1-16. |
[27] |
B.L. Hansen, J.S. Carpenter, S.D. Sintay, C.A. Bronkhorst, R.J. McCabe, J.R. Mayeur, H.M. Mourad, I.J. Beyerlein, N.A. Mara, S.R. Chen, G.T. Gray, Int. J. Plast. 49 (2013) 71-84.
DOI URL |
[28] |
J.Y. Zhang, F.L. Zeng, K. Wu, Y.Q. Wang, X.Q. Liang, G. Liu, G.J. Zhang, J. Sun, Mater. Sci. Eng. A 673 (2016) 530-540.
DOI URL |
[29] |
E.G. Fu, A. Misra, H. Wang, L. Shao, X. Zhang, J. Nucl. Mater. 407 (2010) 178-188.
DOI URL |
[30] |
Q.M. Wei, N. Li, N. Mara, M. Nastasi, A. Misra, Acta Mater 59 (2011) 6331-6340.
DOI URL |
[31] |
Y. Chen, Y. Liu, E.G. Fu, C. Sun, K.Y. Yu, M. Song, J. Li, Y.Q. Wang, H. Wang, X. Zhang, Acta Mater. 84 (2015) 393-404.
DOI URL |
[32] | M. Wang, I.J. Beyerlein, J. Zhang, W.-Z. Han, ActaMater. 160(2018)211-223. |
[33] |
K.Y. Yu, Y. Liu, E.G. Fu, Y.Q. Wang, M.T. Myers, H. Wang, L. Shao, X. Zhang, J. Nucl. Mater. 440 (2013) 310-318.
DOI URL |
[34] | X.Q. Liang, Y.Q. Wang, J.T. Zhao, S.H. Wu, K. Wu, G. Liu, J. Sun, Surf. Coat. Tech- nol. 366 (2019) 255-265. |
[35] |
N. Li, E.G. Fu, H. Wang, J.J. Carter, L. Shao, S.A. Maloy, A. Misra, X. Zhang, J. Nucl. Mater. 389 (2009) 233-238.
DOI URL |
[36] |
S.H. Wu, P.M. Cheng, K. Wu, Z.Q. Hou, Y.Q. Wang, X.Q. Liang, J. Li, J. Kuang, J.Y. Zhang, G. Liu, J. Sun, Int. J. Plast. 111 (2018) 36-52.
DOI URL |
[37] |
X.Q. Liang, Y.Q. Wang, J.T. Zhao, S.H. Wu, X.B. Feng, K. Wu, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 764 (2019) 138259.
DOI URL |
[38] |
J.Y. Zhang, Y.Q. Wang, X.Q. Liang, F.L. Zeng, G. Liu, J. Sun, Acta Mater 92 (2015) 140-151.
DOI URL |
[39] | D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc. Natl. Acad. Sci. 105 (2008) 14769. |
[40] |
R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods B 310 (2013) 75-80.
DOI URL |
[41] |
J. Chen, L. Lu, K. Lu, Scr. Mater. 54 (2006) 1913-1918.
DOI URL |
[42] |
M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Phys. Rev. Lett. 100 (2008) 136102.
DOI URL |
[43] |
A. Kashinath, A. Misra, M.J. Demkowicz, Phys. Rev. Lett. 110 (2013) 086101.
DOI URL |
[44] |
D. Chen, Y. Tong, H. Li, J. Wang, Y.L. Zhao, A. Hu, J.J. Kai, J. Nucl. Mater. 501 (2018) 208-216.
DOI URL |
[45] | S. Zhao, Y. Zhang, W.J. Weber, Enc. Mater. Met. Alloys 2 (2022) 533-547. |
[46] |
S. Zhao, J. Mater. Sci. Technol. 44 (2020) 133-139.
DOI URL |
[47] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[48] |
J.W. Brooks, M.H. Loretto, R.E. Smallman, Acta Metall. 27 (1979) 1839-1847.
DOI URL |
[49] |
G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, T.R. Allen, J. Nucl. Mater. 411 (2011) 41-50.
DOI URL |
[50] |
K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, Scr. Mater. 119 (2016) 65-70.
DOI URL |
[51] |
Y.R. Lin, A. Bhattacharya, D. Chen, J.J. Kai, J. Henry, S.J. Zinkle, Acta Mater. 207 (2021) 116660.
DOI URL |
[52] |
M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Science 300 (2003) 1275.
DOI URL |
[53] |
P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak, E. Arzt, Acta Mater. 56 (2008) 2318-2335.
DOI URL |
[54] |
J.Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, E. Ma, Phys. Rev. B 81 (2010) 172104.
DOI URL |
[55] |
Z.X. Wu, Y.W. Zhang, D.J. Srolovitz, Acta Mater. 57 (2009) 4508-4518.
DOI URL |
[56] |
Y. Liu, Y. Chen, K.Y. Yu, H. Wang, J. Chen, X. Zhang, Int. J. Plast. 49 (2013) 152-163.
DOI URL |
[57] |
S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
[58] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[59] |
J.Y. Zhang, K. Wu, L.Y. Zhang, Y.Q. Wang, G. Liu, J. Sun, Int. J. Plast. 96 (2017) 120-134.
DOI URL |
[60] |
J.S. Koehler, Phys. Rev. B 2 (1970) 547-551.
DOI URL |
[61] |
S.I. Rao, P.M. Hazzledine, Philos. Mag. A 80 (2000) 2011-2040.
DOI URL |
[62] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (2005) 4817-4824.
DOI URL |
[63] |
X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, J. Sun, Int. J. Plast. 95 (2017) 264-277.
DOI URL |
[64] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 (2016) 164-176.
DOI URL |
[65] | B. Yin, F. Maresca, W.A. Curtin, Acta Mater. 188 (2020) 4 86-4 91. |
[66] |
X.G. Li, L.F. Cao, J.Y. Zhang, J. Li, J.T. Zhao, X.B. Feng, Y.Q. Wang, K. Wu, P. Zhang, G. Liu, J. Sun, Acta Mater. 151 (2018) 87-99.
DOI URL |
[67] |
M.S. Colla, B. Wang, H. Idrissi, D. Schryvers, J.P. Raskin, T. Pardoen, Acta Mater. 60 (2012) 1795-1806.
DOI URL |
[68] | Z. Fan, Y. Liu, S. Xue, R.M. Rahimi, D.F. Bahr, H. Wang, X. Zhang, Appl. Phys. Lett. 110 (2017) 611. |
[69] |
X.H. Chen, L. Lu, K. Lu, Scr. Mater. 64 (2011) 311-314.
DOI URL |
[70] |
Z. Shang, J. Ding, C. Fan, D. Chen, J. Li, Y. Zhang, Y. Wang, H. Wang, X. Zhang, Acta Mater. 196 (2020) 175-190.
DOI URL |
[71] |
T. Niu, J. Li, Y. Zhang, J. Cho, J. Ding, R. Su, S. Xue, C. Fan, Z. Shang, D. Chen, Y. Wang, H. Wang, X. Zhang, J. Nucl. Mater. 540 (2020) 152392.
DOI URL |
[72] |
S.H. Li, J.T. Li, W.. Han, Materials (Basel) 12 (2019) 1036.
DOI URL |
[73] | B.A. Szajewski, J.C. Crone, J. Knap, Materials 11 (2020) 100671. |
[74] |
Y.F. Zhao, X.B. Feng, J.Y. Zhang, Y. Lu, S.H. Wu, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Nanoscale 12 (2020) 14135-14149.
DOI PMID |
[75] |
J.J. Niu, J.Y. Zhang, G. Liu, P. Zhang, S.Y. Lei, G.J. Zhang, J. Sun, Acta Mater. 60 (2012) 3677-3689.
DOI URL |
[76] |
G. Sharma, P. Mukherjee, A. Chatterjee, N. Gayathri, A. Sarkar, J.K. Chakravartty, Acta Mater. 61 (2013) 3257-3266.
DOI URL |
[77] |
X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Scr. Mater. 139 (2017) 71-76.
DOI URL |
[78] |
Y.M. Wang, A.M. Hodge, P.M. Bythrow, T.W. Barbee, A.V. Hamza, Appl. Phys. Lett. 89 (2006) 081903.
DOI URL |
[79] |
G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, J. Mater. Sci. Technol. 57 (2020) 101-112.
DOI |
[80] |
W.T. Lin, D. Chen, C.Q. Dang, P.J. Yu, G. Wang, J.H. Lin, F.L. Meng, T. Yang, Y.L. Zhao, S.F. Liu, J.P. Du, G.M. Yeli, C.T. Liu, Y. Lu, S. Ogata, J.J. Kai, Acta Mater. 210 (2021) 116843.
DOI URL |
[1] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[2] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[3] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
[4] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
[5] | Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding [J]. J. Mater. Sci. Technol., 2021, 84(0): 230-238. |
[6] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[7] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
[8] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[9] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[10] | Xu Wang, Nan Zhang, Yujie Zhong, Bailing Jiang, Langhong Lou, Jian Zhang, Jingyang Wang. Microstructure evolution and crystallography of directionally solidified Al2O3/Y3Al5O12 eutectic ceramics prepared by the modified Bridgman method [J]. J. Mater. Sci. Technol., 2019, 35(9): 1982-1988. |
[11] | Jinlong Lv. Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690 [J]. J. Mater. Sci. Technol., 2018, 34(9): 1685-1691. |
[12] | Y.F. Jiang, B. Zhang, Y. Zhou, J.Q. Wang, E.-H. Han, W. Ke. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel [J]. J. Mater. Sci. Technol., 2018, 34(8): 1344-1348. |
[13] | Zalak Joshi, Davit Dhruv, K.N. Rathod, J.H. Markna, A. Satyaprasad, A.D. Joshi, P.S. Solanki, N.A. Shah. Size effects on electrical properties of sol-gel grown chromium doped zinc oxide nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(3): 488-495. |
[14] | Jiangbo Lu, Lu Lu, Sheng Cheng, Ming Liu, Chunlin Jia. Microstructure and secondary phases in epitaxial LaBaCo2O5.5 + δ thin films [J]. J. Mater. Sci. Technol., 2018, 34(2): 398-402. |
[15] | Yongguang Wang, Xiangyu Wang, Bo Sun, Shaochun Tang, Xiangkang Meng. Concentration-dependent Morphology Control of Pt-coated-Ag Nanowires and Effects of Bimetallic Interfaces on Catalytic Activity [J]. J. Mater. Sci. Technol., 2016, 32(1): 41-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||