J. Mater. Sci. Technol. ›› 2022, Vol. 126: 215-227.DOI: 10.1016/j.jmst.2022.03.015
Special Issue: Ceramics 2022; Electronic materials 2022
• Research Article • Previous Articles Next Articles
Yan Songa, Ziyu Liua, Xicheng Zhanga, Runqiu Zhua, Youwei Zhangb, Pinggui Liub,*(
), Lihua Heb, Jie Konga,*(
)
Accepted:2022-04-25
Published:2022-11-01
Online:2022-11-10
Contact:
Pinggui Liu,Jie Kong
About author:kongjie@nwpu.edu.cn (J. Kong).Yan Song, Ziyu Liu, Xicheng Zhang, Runqiu Zhu, Youwei Zhang, Pinggui Liu, Lihua He, Jie Kong. Single source precursor derived SiBCNHf ceramic with enhanced high‐temperature microwave absorption and antioxidation[J]. J. Mater. Sci. Technol., 2022, 126: 215-227.
Fig. 1. Structure characterization of TDEAH, hb-PBSZ and hb-PBSZ-Hf precursor, (a) FT-IR spectra, (b) FT-IR spectra from 1700 cm−1 to 400 cm−1, (c) 1H NMR spectra and (d) 11B-NMR spectra.
Fig. 2. TG curves of hb-PBSZ-Hf precursors with different Hf contents (a), TG-MS spectra of a typical hb-PBSZ-Hf precursor (b), TG curves of the different Hf contents SiBCNHf ceramics with different Hf contents under argon atmosphere and air atmosphere, respectively (c, d).
Fig. 3. XPS spectra of SiBCNHf ceramics with different Hf contents, (a) XPS survey wide scan spectra of SiBCNHf ceramics, (b)-(f) C 1 s scan spectrum, Hf 4f scan spectrum, B 1s scan spectrum, Si 1s scan spectrum and O 1s scan spectrum, respectively, of a typical SiBCNHf ceramic.
Fig. 4. Raman spectra of SiBCNHf ceramics with different Hf content and annealed at different temperatures, (a) SiBCNHf(20) ceramics annealed at 1200-1700 °C, (b) SiBCNHf(25) ceramics annealed at 1200-1700 °C, (c) SiBCN ceramics annealed at 1500-1700 °C, (d) SiBCNHf ceramics annealed at 1700 °C.
Fig. 5. XRD patterns of SiBCNHf ceramics with different Hf contents and annealed at different temperatures, (a) SiBCNHf(20) ceramics annealed at 1200-1700 °C, (b) SiBCNHf(25) ceramics annealed at 1200-1700 °C, (c) SiBCN ceramics annealed at 1500-1700 °C, (d) SiBCNHf ceramics annealed at 1700 °C.
Fig. 8. Real part ε', imaginary part ε" and dielectric loss (tan δ) of SiBCNHf(20)−1200 from 25 °C to 600 °C (a-c), real part ε', imaginary part ε" and dielectric loss (tan δ) of SiBCNHf(25)−1100 from 25 °C to 600 °C (d-f).
Fig. 9. RC curves vs frequency and sample thickness, (a, b) SiBCNHf(20)−1200 at 25 °C, (c, d) SiBCNHf(25)−1100 at 25 °C, (e) RC of SiBCNHf(20)−1200 from 25 °C to 600 °C with a thickness of 2.90 mm, (f) RC of SiBCNHf(25)−1100 from 25 °C to 600 °C with a thickness of 2.60 mm.
Fig. 10. Dependence of real permittivity, imaginary permittivity, and loss tangent on temperature (a-c). The square point is the average value of the measured value at each temperature (25-600 °C), the line represents the linear curve fitted according to the test values, and the dot represents the values calculated according to the fitted curve at a specific temperature (a, b, c), RC at 600 °C calculated from simulated values (d), RC at 600 °C calculated from test values (e), RC at 1100 °C calculated from simulated values (f) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 11. SiBCNHf ceramic coating on the graphite plate with a thickness of 0.256 mm (a-d), SiBCNHf ceramic coating on the graphite plate after heat treatment in Ar at 1100 °C for 2 h with a thickness of 0.204 mm (e-h).
| [1] | H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, Nat. Commun., 12 (2021), p. 834. |
| [2] | Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou, H. Bian, Z. Yang, Y. Li, H. Lv, S. Adera, X. Wang, Nano Micro Lett., 14 (2021), p. 11. |
| [3] | L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol., 52 (2020), pp. 119-126. |
| [4] | Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R. Che, Adv. Mater., 28 (2016), pp. 486-490. |
| [5] | Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, Nano Micro Lett., 12 (2020), p. 125. |
| [6] | Y. Jia, M.A.R. Chowdhury, D. Zhang, C. Xu, ACS Appl. Mater. Interfaces, 11 (2019), pp. 45862-45874. |
| [7] | Q. Chen, D. Li, X. Liao, Z. Yang, D. Jia, Y. Zhou, R. Riedel, ACS Appl. Mater. Interfaces, 13 (2021), pp. 34889-34898. |
| [8] | Y. Yang, L. Liu, H. Zhu, N. Bao, J. Ding, J. Chen, K. Yu, ACS Appl. Mater. Interfaces, 12 (2020), pp. 16609-16619. |
| [9] | J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, ACS Appl. Mater. Interfaces, 11 (2019), pp. 39304-39314. |
| [10] | J.L. Liu, L.M. Zhang, D.Y. Zang, H.J. Wu, Adv. Funct. Mater., 31 (2021), Article 2105018. |
| [11] | X. Wang, J.C. Shu, X.M. He, M. Zhang, X.X. Wang, C. Gao, J. Yuan, M.S. Cao, ACS Sustain. Chem. Eng., 6 (2018), pp. 14017-14025. |
| [12] | F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, J. Mater. Chem. A, 3 (2015), pp. 14358-14369. |
| [13] | J. Xu, X. Zhang, Z. Zhao, H. Hu, B. Li, C. Zhu, X. Zhang, Y. Chen, Small, 17 (2021), Article 2102032. |
| [14] | B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater., 26 (2014), pp. 3484-3489. |
| [15] | Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, J. Kong, J. Mater. Sci. Technol., 100 (2022), pp. 1-11. |
| [16] | W. Ma, R. Yang, T. Wang, A.C.S. Appl, Nano Mater., 3 (2020), pp. 8319-8327. |
| [17] | L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao, J. Zhang, M. Wang, R. Che, Small, 15 (2019), Article 1900900. |
| [18] | X. Han, Y. Huang, L. Ding, Y. Song, T. Li, P. Liu, A.C.S. Appl, Nano Mater., 4 (2020), pp. 691-701. |
| [19] | F. Ye, Q. Song, Z.C. Zhang, W. Li, S.Y. Zhang, X.W. Yin, Y.Z. Zhou, H.W. Tao, Y.S. Liu, L.F. Cheng, L.T. Zhang, H.J. Li, Adv. Funct. Mater., 28 (2018), Article 1707205. |
| [20] | S. Xiao, H. Mei, D. Han, L. Cheng, Compos. Part B Eng., 183 (2020), Article 107629. |
| [21] | Z. Yu, X. Lv, K. Mao, Y. Yang, A. Liu, J. Adv. Ceram., 9 (2020), pp. 617-628. |
| [22] | H. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, ACS Appl. Mater. Interfaces, 7 (2015), pp. 7073-7077. |
| [23] | Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang, R. Yu, J. Shui, Adv. Funct. Mater., 29 (2019), Article 1807624. |
| [24] | B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng, Z.J. Xu, Adv. Funct. Mater., 29 (2019), Article 1901236. |
| [25] | J. Liu, L. Zhang, H. Wu, Adv. Funct. Mater., 32 (2021), Article 2110496 |
| [26] | C. Sun, Z. Jia, S. Xu, D. Hu, C. Zhang, G. Wu, J. Mater. Sci. Technol., 113 (2022), pp. 128-137. |
| [27] | Y. Song, P. Liu, R. Zhou, R. Zhu, J. Kong, Carbon, 188 (2022), pp. 12-24. |
| [28] | Y. Han, K. Ruan, J. Gu, Nano Res., 15 (2022), pp. 4747-4755. |
| [29] | J.X. Liu, X. Huang, G.J. Zhang, T. Parthasarathy, J. Am. Ceram. Soc., 96 (2013), pp. 1751-1756. |
| [30] | Q.Q. Zhu, Y. Zhang, W.M. Guo, S.K. Sun, H.T. Lin, J. Am. Ceram. Soc., 102 (2019), pp. 6427-6432. |
| [31] | S. Chen, Y. Gou, H. Wang, K. Jian, J. Wang, Mater. Des., 117 (2017), pp. 257-264. |
| [32] | E. Ionescu, S. Bernard, R. Lucas, P. Kroll, S. Ushakov, A. Navrotsky, R. Riedel, Adv. Eng. Mater., 21 (2019), Article 1900269. |
| [33] | D. Sciti, S. Guicciardi, M. Nygren, J. Am. Ceram. Soc., 91 (2008), pp. 1433-1440. |
| [34] | P. Sarin, P.E. Driemeyer, R.P. Haggerty, D.K. Kim, J.L. Bell, Z.D. Apostolov, W.M. Kriven, J. Eur. Ceram. Soc., 30 (2010), pp. 2375-2386. |
| [35] | W.G. Fahrenholtz, G.E. Hilmas, Int. Mater. Rev., 57 (2013), pp. 61-72. |
| [36] | C. Luo, T. Jiao, Y. Tang, J. Kong, Adv. Eng. Mater., 20 (2018), Article 1701168. |
| [37] | P. Miao, K.Y. Cheng, H.Q. Li, J.W. Gu, K.J. Chen, S. Wang, D. Wang, T.X. Liu, B.B. Xu, J. Kong, ACS Appl. Mater. Interfaces, 11 (2019), pp. 17706-17713. |
| [38] | G. Barroso, Q. Li, R.K. Bordia, G. Motz, J. Mater. Chem. A, 7 (2019), pp. 1936-1963. |
| [39] | E. Ionescu, H.J. Kleebe, R. Riedel, Chem. Soc. Rev., 41 (2012), pp. 5032-5052. |
| [40] | Y. Song, L. He, X. Zhang, F. Liu, N. Tian, Y. Tang, J. Kong, J. Phys. Chem. C, 121 (2017), pp. 24774-24785. |
| [41] | Y. Song, S. Jin, K. Hu, Y. Du, J. Liang, J. Kong, J. Am. Ceram. Soc., 104 (2021), pp. 5244-5256. |
| [42] | C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, ACS Appl. Mater. Interfaces, 10 (2018), pp. 39307-39318. |
| [43] | R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, F. Aldinger, Nature, 382 (1996), pp. 796-798. |
| [44] | J. Kong, M. Wang, J. Zou, L. An, ACS Appl. Mater. Interfaces, 7 (2015), pp. 6733-6744. |
| [45] | J. Yuan, S. Hapis, H. Breitzke, Y.P. Xu, C. Fasel, H.J. Kleebe, G. Buntkowsky, R. Riedel, E. Ionescu, Inorg. Chem., 53 (2014), pp. 10443-10455. |
| [46] | Q. Wen, Z. Yu, R. Riedel, E. Ionescu, J. Eur. Ceram. Soc., 41 (2021), pp. 3002-3012. |
| [47] | L. Pang, H. Luo, X. Fan, W. Zhou, P. Chen, P. Xiao, Q. Wen, Y. Li, Z. Yu, R. Riedel, J. Eur. Ceram. Soc., 41 (2021), pp. 2425-2434. |
| [48] | S. Kaur, G. Mera, R. Riedel, E. Ionescu, J. Eur. Ceram. Soc., 36 (2016), pp. 967-977. |
| [49] | Q. Wen, Z. Yu, X. Liu, S. Bruns, X. Yin, M. Eriksson, Z.J. Shen, R. Riedel, J. Mater. Chem. C, 7 (2019), pp. 10683-10693. |
| [50] | H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, Adv. Funct. Mater., 30 (2019), Article 1907251. |
| [51] | Z. Lou, Q. Wang, X. Zhou, U.I. Kara, R.S. Mamtani, H. Lv, M. Zhang, Z. Yang, Y. Li, C. Wang, S. Adera, X. Wang, J. Mater. Sci. Technol., 113 (2022), pp. 33-39. |
| [52] | P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, Nano Micro Lett., 14 (2022), p. 51. |
| [53] | C. Luo, Y. Tang, T. Jiao, J. Kong, ACS Appl. Mater. Interfaces, 10 (2018), pp. 28051-28061. |
| [54] | M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small, 14 (2018), Article 1800987. |
| [55] | R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater., 16 (2004), pp. 401-405. |
| [1] | Jia Zhao, Ying Wei, Yi Zhang, Qingguo Zhang. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 141-151. |
| [2] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
