J. Mater. Sci. Technol. ›› 2022, Vol. 126: 228-236.DOI: 10.1016/j.jmst.2022.02.052
Special Issue: High/Medium entropy alloys 2022
• Research Article • Previous Articles Next Articles
Zhen Chena,1, Hongbo Xieb,1, Haile Yanb, Xueyong Pangb, Yuhui Wangc, Guilin Wud, Lijun Zhange, HuTanga, Bo Gaof, Bo Yangb, Yanzhong Tianb,*(
), Huiyang Goua,*(
), Gaowu Qinb
Accepted:2022-04-25
Published:2022-11-01
Online:2022-11-10
Contact:
Yanzhong Tian,Huiyang Gou
About author:huiyang.gou@hpstar.ac.cn (H. Gou).Zhen Chen, Hongbo Xie, Haile Yan, Xueyong Pang, Yuhui Wang, Guilin Wu, Lijun Zhang, HuTang, Bo Gao, Bo Yang, Yanzhong Tian, Huiyang Gou, Gaowu Qin. Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained architecture[J]. J. Mater. Sci. Technol., 2022, 126: 228-236.
Fig. 1. XRD patterns of the alloys with different treatment states. (a) XRD patterns of CR, CR725, and CR900, respectively. (b) Lebail refinement of the XRD pattern of CR725.
Fig. 2. Microstructure of CR. (a) SEM-BSE image showing typical deformation microstructure. (b) TEM-BF image exhibiting high-density dislocations and the corresponding SAED from one grain. (c) HRTEM image of deformed grains showing a large number of SF bundles inside FCC grains. The inset is the fast Fourier transform (FFT) pattern corresponding to the yellow box. (d) HAADF-STEM image showing a representative SF.
Fig. 3. Fully-recrystallized dual-phase UFG architecture in CR725. (a) TKD phase map showing FCC/HCP dual-phase UFG structure. The black and yellow lines are related to high angle boundaries and twin boundaries, respectively. (b) TKD inverse pole figure (IPF) map. (c) TEM-BF image of dual-phase UFG structure showing low-density dislocations. (d) HRTEM image of FCC/HCP dual-phase region. The inset is the FFT pattern of the region marked by the cyan box in HCP lamellae. (e) Corresponding SAED patterns of the FCC solid matrix and the HCP solution lamellae. (f) HAADF-STEM image of the atomic arrangements of FCC/HCP dual-phase region.
Fig. 4. Microstructure of CR900. (a) EBSD inverse pole figure (EBSD-IPF) map. (b) EBSD phase map showing FCC single-phase FG microstructure. The black and yellow lines are related to high angle boundaries and twin boundaries, respectively.
| Sample | FCC | HCP | ||
|---|---|---|---|---|
| Fraction (%) | Size (μm) | Fraction (%) | Thickness (μm) | |
| CR | 100 | / | 0 | / |
| CR725 | 72.6 | 0.361 ± 0.208 | 27.4 | 0.126 ± 0.61 |
| CR900 | 100 | 2.02 ± 1.04 | 0 | / |
Table 1. Phase constituents, volume fraction, and grain size (lamellar thickness) of CR, CR725, and CR900.
| Sample | FCC | HCP | ||
|---|---|---|---|---|
| Fraction (%) | Size (μm) | Fraction (%) | Thickness (μm) | |
| CR | 100 | / | 0 | / |
| CR725 | 72.6 | 0.361 ± 0.208 | 27.4 | 0.126 ± 0.61 |
| CR900 | 100 | 2.02 ± 1.04 | 0 | / |
Fig. 5. Corresponding chemical compositions of FCC matrix and HCP lamellae in dual-phase UFG structure. (a) STEM image showing FCC/HCP dual-phase UFG structure. (b) STEM-EDS mapping of the region identical to (a), exhibiting the distributions of V, Cr, Co, and Ni, respectively, in the two phases. (c) Enlarged view of the region marked by the red box in (a) and the corresponding EDS composition profiles of the selected region marked by the yellow line.
Fig. 6. Tensile properties of (a) CR, CR725, and CR900 at room temperature. The inset presents the corresponding strain hardening rate (dσ/dε) of CR725. (b) Maps of εUE vs σYS of typical HEAs and MEAs at room temperature.
| Sample | YS (MPa) | UTS (MPa) | UE (%) | TE (%) |
|---|---|---|---|---|
| CR | 1693 | 1822 | 1.7 | 3.5 |
| CR725 | 1476 | 1578 | 13.2 | 16.8 |
| CR900 | 682 | 1123 | 35.9 | 40.1 |
Table 2. Tensile properties of CR, CR725, and CR900, respectively.
| Sample | YS (MPa) | UTS (MPa) | UE (%) | TE (%) |
|---|---|---|---|---|
| CR | 1693 | 1822 | 1.7 | 3.5 |
| CR725 | 1476 | 1578 | 13.2 | 16.8 |
| CR900 | 682 | 1123 | 35.9 | 40.1 |
Fig. 7. Theoretically generalized stacking fault energies (SFEs) at 0 K for the FCC structured (a, c) VxCr1-xCoNi (x = 0, 0.5, and 1) alloys and (b, d) V14.35Cr21.12Co31.84Ni32.69 (measured composition of the FCC phase, termed as V14.35), V0.5Cr0.5CoNi (nominal composition, termed as V16.67), and V19.45Cr12.48Co33.31Ni34.76 (measured composition of the HCP phase, termed as V19.45). γisf, γusf, and γutf represent the intrinsic SFE, the unstable SFE, and the unstable twinning fault energy, respectively. (c) and (d) are the enlarged views of the local regions marked by the purple boxes in (a) and (b), respectively.
Fig. 8. Relative total energy between the paramagnetic FCC (FCC PM) and the paramagnetic HCP (HCP PM) structured phases plotted as a function of Wigner-Seitz radius for the V0.5Cr0.5CoNi alloy at 0 K.
Fig. 9. Plastic deformation mechanisms of CR725. (a) TEM-BF image after a tensile fracture. (b) SAED patterns corresponding to No. 1 FCC grain and No. 2 HCP grain in (a). The inset in the SAED of the HCP phase shows the enlarged view corresponding to the blue box. (c) View of another electron beam incident direction corresponding to the region in (a). The inset shows the corresponding SAED of No. 1 FCC grain. (d) Enlarged view of the identical region outlined by the yellow box in (c). (e) HRTEM image of SFs. The inset shows an FFT image corresponding to the cyan box. (f) Corresponding inverse fast Fourier transform (IFFT) image showing a representative SF.
| [1] | R.O. Ritchie, Nat. Mater., 10 (2011), pp. 817-822. |
| [2] | Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun., 5 (2014), p. 3580. |
| [3] | Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature, 419 (2002), pp. 912-915. |
| [4] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), pp. 14501-14505. |
| [5] | L. Zhang, C. Zhen, Y.H. Wang, G.Q. Ma, T.L. Huang, G.L. Wu, D.J. Jensen, Scr. Mater., 141 (2017), pp. 111-114. |
| [6] | K. Lu, L. Lu, S. Suresh, Science, 324 (2009), pp. 349-352. |
| [7] | B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science, 357 (2017), pp. 1029-1032. |
| [8] | S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature, 544 (2017), pp. 460-464. |
| [9] | S.H. Kim, H. Kim, N.J. Kim, Nature, 518 (2015), pp. 77-79. |
| [10] | T. Yang, Y.L. Zhao, B.X. Cao, J.J. Kai, C.T. Liu, Scr. Mater., 183 (2020), pp. 39-44. |
| [11] | D.B. Miracle, O.N. Senkov, Acta Mater, 122 (2017), pp. 448-511. |
| [12] | E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater., 4 (2019), pp. 515-534. |
| [13] | X.H. Du, W.P. Li, H.T. Chang, T. Yang, G.S. Duan, B.L. Wu, J.C. Huang, F.R. Chen, C.T. Liu, W.S. Chuang, Y. Lu, M.L. Sui, E.W. Huang, Nat. Commun., 11 (2020), p. 2390. |
| [14] | T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science, 362 (2018), pp. 933-937. |
| [15] | Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater, 138 (2017), pp. 72-82. |
| [16] | J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater, 102 (2016), pp. 187-196. |
| [17] | L. Fan, T. Yang, Y.L. Zhao, J.H. Luan, G. Zhou, H. Wang, Z.B. Jiao, C.T. Liu, Nat. Commun., 11 (2020), p. 6240. |
| [18] | Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature, 563 (2018), pp. 546-550. |
| [19] | Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature, 534 (2016), pp. 227-230. |
| [20] | D.X. Wei, X.Q. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Lee, H.S. Kim, A. Chiba, H. Kato, Acta Mater, 181 (2019), pp. 318-330. |
| [21] | Z.B. Yang, S. Lu, Y.Z. Tian, Z.J. Gu, J. Sun, L. Vitos, J. Mater. Sci. Technol., 99 (2022), pp. 161-168. |
| [22] | H.G. Li, W.J. Zhao, T. Chen, Y.J. Huang, J.F. Sun, P. Zhu, Y.Z. Lu, A.H.W. Ngan, D.Q. Wei, Q. Du, Y.C. Zou, J. Mater. Sci. Technol., 115 (2022), pp. 40-51. |
| [23] | H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater., 29 (2017), Article 1701678. |
| [24] | S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W.J. Lu, W.S. Choi, B. Gault, J. Neugebauer, D. Raabe, Adv. Mater., 31 (2019), Article 1807142. |
| [25] | S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater., 134 (2017), pp. 33-36. |
| [26] | S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J Zhang, Z.F. Zhang, Mater. Des., 133 (2017), pp. 122-127. |
| [27] | L. Vitos, Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications Springer Science & Business Media, Berlin (2007). |
| [28] | L. Vitos, H.L. Skriver, B. Johansson, J. Kollár, Comput. Mater. Sci., 18 (2000), pp. 24-28. |
| [29] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865-3868. |
| [30] | B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter, J. Phys. F: Met. Phys., 15 (1985), pp. 1337-1386. |
| [31] | The periodic table of the elements. . |
| [32] | X.F. Chen, Q. Wang, Z.Y. Cheng, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuan, J. Zhu, X.L. Wu, E. Ma, Nature, 592 (2021), pp. 712-716. |
| [33] | P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae, H.S. Kim, Intermetallics, 113 (2019), Article 106578. |
| [34] | M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, X.L. Wu, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), pp. 7224-7229. |
| [35] | C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater, 165 (2019), pp. 496-507. |
| [36] | J. Moon, J.M. Park, J.W. Bae, N. Kang, J. Oh, H. Shin, H.S. Kim, Scr. Mater., 186 (2020), pp. 24-28. |
| [37] | J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), pp. 8919-8924. |
| [38] | G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater, 128 (2017), pp. 292-303. |
| [39] | M. Raghavan, B.J. Berkowitz, R.D. Kane, Mater. Trans. A, 11 (1980), pp. 203-207. |
| [40] | R.P. Singh, R.D. Doherty, Metall. Mater. Trans. A, 23 (1992), pp. 307-319. |
| [41] | Y.H. Jo, W.M. Choi, D.G. Kim, A. Zargaran, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Sci. Rep., 9 (2019), p. 2948. |
| [42] | J.F. Smith, J. Phase Equilib., 12 (1991), pp. 324-331. |
| [43] | G.W. Qin, K. Oikawa, Z.M. Sun, S. Sumi, T. Ikeshoji, J.J. Wang, S.W. Guo, S.M. Hao, Metall. Mater. Trans. A, 32 (2001), pp. 1927-1938. |
| [44] | J.H. Gao, S.H. Jiang, H.R. Zhang, D.K. Guan, Y.D. Xu, S.K. Guan, L.A. Bendersky, A.V. Davydov, Y. Wu, H.H. Zhu, Y.D. Wang, Z.P. Lu, W.M. Rainforth, Nature, 590 (2021), pp. 262-267. |
| [45] | J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater, 132 (2017), pp. 35-48. |
| [46] | Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater, 165 (2019), pp. 228-240. |
| [47] | J. Gu, N. Song, Y. Liu, M. Song, Mater.Sci. Eng. A, 755 (2019), pp. 289-294. |
| [48] | J. Gu, M. Song, Scr. Mater., 162 (2019), pp. 345-349. |
| [49] | R.P. Zhang, S.T. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature, 581 (2020), pp. 283-287. |
| [50] | Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, S. Lee, Nat. Commun., 8 (2017), p. 15719. |
| [51] | P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, P.K. Liaw, Nat. Commun., 10 (2019), p. 489. |
| [52] | P.J. Shi, R.G. Li, Y. Li, Y.B. Wen, Y.B. Zhong, W.L. Ren, Z. Shen, T.X. Zheng, J.C. Peng, X. Liang, P.F. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, Y.D. Wang, Science, 373 (2021), pp. 912-918. |
| [1] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
| [2] | Zhuang Li, Pengcheng Zhao, Tiwen Lu, Kai Feng, Yonggang Tong, Binhan Sun, Ning Yao, Yu Xie, Bolun Han, Xiancheng Zhang, Shantung Tu. Effects of post annealing on the microstructure, precipitation behavior, and mechanical property of a (CoCrNi)94Al3Ti3 medium-entropy alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 135(0): 142-155. |
| [3] | Jianying Wang, Jianpeng Zou, Hailin Yang, Xixi Dong, Peng Cao, Xiaozhou Liao, Zhilin Liu, Shouxun Ji. Ultrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-scale heterogeneous structures [J]. J. Mater. Sci. Technol., 2023, 135(0): 241-249. |
| [4] | J.X. Yan, Z.J. Zhang, P. Zhang, J.H. Liu, H. Yu, Q.M. Hu, J.B. Yang, Z.F. Zhang. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J. Mater. Sci. Technol., 2023, 139(0): 232-244. |
| [5] | S. Shuang, G.J. Lyu, D. Chung, X.Z. Wang, X. Gao, H.H. Mao, W.P. Li, Q.F. He, B.S. Guo, X.Y. Zhong, Y.J. Wang, Y. Yang. Unusually high corrosion resistance in MoxCrNiCo medium entropy alloy enhanced by acidity in aqueous solution [J]. J. Mater. Sci. Technol., 2023, 139(0): 59-68. |
| [6] | Mingxu Wu, Shubin Wang, Fei Xiao, Guoliang Zhu, Chao Yang, Da Shu, Baode Sun. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 210-215. |
| [7] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
| [8] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
| [9] | Hyun Chung, Dae Woong Kim, Woo Jin Cho, Heung Nam Han, Yuji Ikeda, Shoji Ishibashi, Fritz Körmann, Seok Su Sohn. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 270-280. |
| [10] | Muhammad Akmal, Hyun Woo Seong, Ho Jin Ryu. Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off [J]. J. Mater. Sci. Technol., 2022, 109(0): 176-185. |
| [11] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
| [12] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
| [13] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
| [14] | Jianying Wang, Jianpeng Zou, Hailin Yang, Lijun Zhang, Zhilin Liu, Xixi Dong, Shouxun Ji. Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures [J]. J. Mater. Sci. Technol., 2022, 127(0): 61-70. |
| [15] | Shuo Sun, Yang Yang, Chenxu Han, Guixun Sun, Yan Chen, Hongxiang Zong, Jiangjiang Hu, Shuang Han, Xiaozhou Liao, Xiangdong Ding, Jianshe Lian. Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 127(0): 98-107. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
