J. Mater. Sci. Technol. ›› 2022, Vol. 98: 197-204.DOI: 10.1016/j.jmst.2021.05.023
• Research Article • Previous Articles Next Articles
Wenjie Lua,b, Kang Yana, Xian Luoa,*(), Yuetang Wangc, Le Houa, Pengtao Lia, Bin Huanga, Yanqing Yanga,b,*(
)
Received:
2021-03-08
Revised:
2021-04-24
Accepted:
2021-05-16
Published:
2022-01-30
Online:
2022-01-25
Contact:
Xian Luo,Yanqing Yang
About author:
yqyang@nwpu.edu.cn (Y. Yang).Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures[J]. J. Mater. Sci. Technol., 2022, 98: 197-204.
Fig. 1. Microstructure investigation of 1323 K/15 min annealed Al4Ti4 MEA, (a) IPF image showing heterogeneous grain structure, (b) DF image showing large precipitates randomly distribute in matrix, (c) and (d) SADPs along [001] and [110] zone axis, respectively.
Fig. 2. Microstructure investigation of 973 K/8 h aged Al4Ti4 MEA sample, (a) IPF image, inset (a1) and (a2) show grain size distribution and grain boundaries misorientation, respectively, (b) TEM BF image, showing a twinned NG at the lower part of a UFG, (c) and (d) SADP and HRTEM of NT structur, (e) DF image showing heterogeneous precipitates distribution, (f), (g) and (h) SADPs along [100], [110] and [111] zone axes, respectively, which confirmed those precipitates both have L12 superlattice, (i) and (j) HAADF-STEM images along [100] zone axe, which verified those heterogeneous precipitates both coherent with fcc matrix, (k)-(o) EDS mappings showing constitution element distribution of the red rectangle in (e).
Phases | Compositions (at.%) | ||||
---|---|---|---|---|---|
Ni | Cr | Fe | Al | Ti | |
Large L12 | 70.15 | 5.45 | 6.22 | 5.38 | 12.85 |
Fine L12 | 62.17 | 11.73 | 12.74 | 5.44 | 7.92 |
Matrix | 41.07 | 25.91 | 27.34 | 3.08 | 2.78 |
Table 1 Chemical compositions of different phase in this DHS Al4Ti4 MEA sample (at.%).
Phases | Compositions (at.%) | ||||
---|---|---|---|---|---|
Ni | Cr | Fe | Al | Ti | |
Large L12 | 70.15 | 5.45 | 6.22 | 5.38 | 12.85 |
Fine L12 | 62.17 | 11.73 | 12.74 | 5.44 | 7.92 |
Matrix | 41.07 | 25.91 | 27.34 | 3.08 | 2.78 |
Fig. 4. Mechanical properties of the DHS Al4Ti4 MEA sample, (a) representative engineering stress-strain curve, the inset is LUR curve, and (b) work-hardening rate curve.
Fig. 7. Deformation characters in solid-solution Ni50Cr25Fe25 MEA after tensile testing, (a) BF image, inset is the corresponding SADP, (b) HRTEM image of red rectangle region in (b).
Fig. 8. Deformation characters in the DHS Al4Ti4 MEA after tensile test, (a) high-density hierarchical SFs (yellow arrows) at two {111} slip plans, (b) HRTEM showing intersecting SFs (white dash line) and LC locks (red dot).
[1] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[2] | H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Curr. Opin. Solid State Mater.Sci. 21 (2017) 252-266. |
[3] | M.C. Gao, Springer, 2016. |
[4] | Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Sci. Rep. 8 (2018) 1-9. |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[6] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[7] |
B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[8] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI |
[9] |
D.G. Kim, Y.H. Jo, J. Yang, W.-.M. Choi, H.S. Kim, B.-.J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171 (2019) 67-72.
DOI URL |
[10] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[11] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
[12] |
Y.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun. 9 (2018) 4063.
DOI URL |
[13] |
W. Lu, X. Luo, Y. Yang, K. Yan, B. Huang, P. Li, Mater. Sci. Eng. 780 (2020) 139218.
DOI URL |
[14] |
M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 7224-7229.
DOI URL |
[15] |
T. Yang, Y.L. Zhao, B.X. Cao, J.J. Kai, C.T. Liu, Scr. Mater. 183 (2020) 39-44.
DOI URL |
[16] |
Y. Xie, J. Liang, D. Zhang, Y. Luo, Z. Zhang, Y. Liu, J. Wang, Scr. Mater. 187 (2020) 390-394.
DOI URL |
[17] |
Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Scr. Mater. 148 (2018) 51-55.
DOI URL |
[18] |
W. Lu, X. Luo, Y. Yang, W. Le, B. Huang, P. Li. J. Alloys Compd. 833 (2020) 155074.
DOI URL |
[19] |
B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao. J. Alloys Compd. 827 (2020) 153981.
DOI URL |
[20] |
R. Wei, K. Zhang, L. Chen, Z. Han, T. Wang, C. Chen, J. Jiang, T. Hu, F. Li. J. Mater. Sci. Technol. 57 (2020) 153-158.
DOI URL |
[21] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater Sci. 60 (2014) 130-207.
DOI URL |
[22] |
G.G.D. Ponge, Acta Mater. 46 (1998) 69-80.
DOI URL |
[23] |
T. Wang, G. Sheng, Z.-.K. Liu, L.-.Q. Chen, Acta Mater. 56 (2008) 5544-5551.
DOI URL |
[24] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[25] |
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 14501-14505.
DOI URL |
[26] |
G. Li, M. Liu, S. Lyu, M. Nakatani, R. Zheng, C. Ma, Q. Li, K. Ameyama, Scr. Mater. 191 (2021) 196-201.
DOI URL |
[27] |
Y. Xie, D. Zhou, Y. Luo, T. Xia, W. Zeng, C. Li, J. Wang, J. Liang, D. Zhang, Mater. Charact. 148 (2019) 307-316.
DOI URL |
[28] |
I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157 (2018) 24-29.
DOI URL |
[29] |
L. Zhang, X. Huo, A. Wang, X. Du, L. Zhang, W. Li, N. Zou, G. Wan, G. Duan, B. Wu, Intermetallics 122 (2020) 106813.
DOI URL |
[30] |
J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.-.J. Lee, H.S. Kim, J. Alloys Compd. 781 (2019) 75-83.
DOI URL |
[31] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[32] |
S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Mater. Sci. Eng. 671 (2016) 82-86.
DOI URL |
[33] |
K. Ming, X. Bi, J. Wang, Scr. Mater. 137 (2017) 88-93.
DOI URL |
[34] |
Y.L.Z.T. Yang, Y. Tong, Z.B. Jiao, J.X. Cai, J. Wei, X.D. Han, D. Chen, J.J.K.A. Hu, Y.Liu K. Lu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[35] |
Y. Chen, H.W. Deng, Z.M. Xie, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, R. Liu, X.P. Wang, Q.F. Fang, C.S. Liu. J. Alloys Compd. 828 (2020) 154457.
DOI URL |
[36] | Y.J. Chang, A.C. Yeh. Mater. Chem. Phys. (2017) 1-9. |
[37] |
F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C.T. Liu, J.-j. Kai, Acta Mater. 167 (2019) 275-286.
DOI URL |
[38] |
H. Buken, E. Kozeschnik, Metall. Mater. Trans. A 48 (2016) 2812-2818.
DOI URL |
[39] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544 (2017) 460-464.
DOI URL |
[40] |
R.L. Fleischer, Acta Metall. 11 (1963) 203-209.
DOI URL |
[41] | G.I. Taylor, Proc. R. Soc. Lond. 145 (1934) 362-387. |
[42] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[43] | R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Met- all. Mater. Trans. A 40 (2009) 1588-1603. |
[44] |
W.L. Fink, Metall. Trans. A 16 (1985) 2131-2165.
DOI URL |
[45] |
T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40 (1992) 1-30.
DOI URL |
[46] | V. Gerold, H.M. Pham, Scr. Metall. 13 (1979) 0-898. |
[47] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[48] |
X.L. Wu, Y.T. Zhu, Y.G. Wei, Q. Wei, Phys. Rev. Lett. 103 (2009) 205504.
PMID |
[49] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 826.
DOI URL |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[3] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[4] | Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 194-204. |
[5] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[6] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[7] | Hao Feng, Huabing Li, Xiaolei Wu, Zhouhua Jiang, Si Zhao, Tao Zhang, Dake Xu, Shucai Zhang, Hongchun Zhu, Binbin Zhang, Muxin Yang. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1781-1790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||