J. Mater. Sci. Technol. ›› 2022, Vol. 126: 22-43.DOI: 10.1016/j.jmst.2022.02.050
• Research Article • Previous Articles Next Articles
Qinyang Zhaoa,*(), Leandro Bolzonib, Yongnan Chena,*(
), Yiku Xua, Rob Torrensb, Fei Yangb
Received:
2021-12-21
Revised:
2022-02-21
Accepted:
2022-02-21
Published:
2022-11-01
Online:
2022-11-10
Contact:
Qinyang Zhao,Yongnan Chen
About author:
frank_cyn@163.com (Y. Chen).Qinyang Zhao, Leandro Bolzoni, Yongnan Chen, Yiku Xu, Rob Torrens, Fei Yang. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms[J]. J. Mater. Sci. Technol., 2022, 126: 22-43.
Fig. 1. Initial microstructure of as-consolidated alloy: (a) orientation map; (b) phase distribution map (blue area is β matrix, red area refers to α precipitation); (c) GB map (LAGBs are indicated by green lines, and HAGBs are in black); (d) PFs of β phase.
Fig. 2. True stress-true strain curves of the alloy deformed under different conditions: (a) temperature of 900 °C, and varied strain rate; (b) strain rate of 0.01 s−1, and varied temperatures.
Fig. 3. EBSD results of the alloy deformed under the conditions of 900 °C/70% and varying strain rates: (a1)-(a3) 10 s−1; (b1)-(b3) 1 s−1; (c1)-(c3) 0.1 s−1; (d1)-(d3) 0.01 s−1; (e1)-(e3) 0.001 s−1. Orientation maps are captured along TD, and GOS maps are constructed for β phase.
Temperature ( °C) | Equilibrium volume fraction (%) |
---|---|
800 | 36.7 |
850 | 32.5 |
900 | 25.6 |
950 | 6.5 |
Table 1. Equilibrium volume fractions (after heating and socking, before deformation) of α phase at the temperatures in α+β region.
Temperature ( °C) | Equilibrium volume fraction (%) |
---|---|
800 | 36.7 |
850 | 32.5 |
900 | 25.6 |
950 | 6.5 |
Fig. 4. EBSD results of the alloy deformed under the conditions of 900 °C/0.1 s−1 and varied deformation degrees: (a1)-(a3) 20%; (b1)-(b3) 30%; (c1)-(c3) 40%; (d1)-(d3) 50%; (e1)-(e3) 60%; (f1)-(f3) 80%. Orientation maps are captured along TD, and GOS maps are constructed for β phase.
Fig. 5. EBSD results of the alloy deformed under the conditions of 0.01 s−1/70% and varied deformation temperatures: (a1)-(a3) 800 °C; (b1)-(b3) 850 °C; (c1)-(c3) 950 °C; (d1)-(d3) 1000 °C; (e1)-(e3) 1050 °C; (f1)-(f3) 1100 °C. Orientation maps are captured along TD.
Fig. 6. EBSD orientation maps and corresponding IPFs for DRXed and deformed/sub-structured regions (β phase) of the alloy deformed under the conditions of 900 °C/70% and varied strain rates: (a1, a2) 1 s−1; (b1, b2) 0.1 s−1; (c1, c2) 0.01 s−1; (d1, d2) 0.001 s−1. The grains with GOS index less than 2° are recognized as DRXed grains, orientation maps are captured along TD.
Fig. 7. EBSD orientation maps and corresponding IPFs for DRXed and deformed/sub-structured regions (β phase) of the alloy deformed under the conditions of 900 °C/0.1 s−1 and varied deformation degrees: (a1, a2) 40%; (b1, b2) 50%; (c1, c2) 60%; (d1, d2) 80%. The grains with GOS index less than 2° are recognized as DRXed grains, orientation maps are captured along TD.
Fig. 8. TEM results demonstrating dynamic variation mechanisms of α precipitation under various conditions (70% deformation): (a, b) 800 °C/1 s−1; (c, d) 800 °C/0.01 s−1; (e) 850 °C/1 s−1; (f) 850 °C/0.01 s−1; (g) 900 °C/1 s−1; (h) 900 °C/0.01 s−1.
Fig. 9. TEM results demonstrating layered coarsening mechanism of α precipitation under the condition of 800 °C/0.01 s−1/70%: (a, b) BF-TEM images of layered coarsening α phase (LCP-α); (c) detailed microstructure characteristics of LCP-α; (d, e) SAED patterns of the corresponding areas in (c); (f) features of layered coarsening area; (g, h) HRTEM images recorded at the marked square regions in (f), with corresponding FFT patterns inset; (i) IFFT images of the marked square region in (h), showing the lattice and dislocation structure, with FFT patterns inset.
Fig. 10. TEM results demonstrating α separation and β wedging mechanisms under the condition of 850 °C/0.01 s−1/70%: (a, b) BF-TEM images of the separating α phase; (c) HRTEM image of the separating/wedging area with corresponding FFT patterns insert; (d) HADDF-STEM-EDS map of the separating/wedging area; (e)-(h) IFFT images of the marked square regions in (c), with corresponding FFT patterns inserted. (i) STEM-EDS spot analysis results of the specific points in (c).
Fig. 11. TEM results demonstrating multi-interior twinning mechanism of α precipitation under the condition of 800 °C/10 s−1/70%: (a, b) IT α phase (ITα); (c, d) close-up view of the internal micro-twinning; (e, f) SAED patterns of the corresponding areas in (d); (g) dislocation configures near ITα; (h) transverse fracture of compression twin; (i) longitudinal fracture of tension twin with SAED pattern inserted.
Fig. 12. TEM results demonstrating internal compositing mechanism of α precipitation under the condition of 900 °C/10 s−1/70%: (a, b) early stage of the composite-structured α phase (CSα); (c, d) detailed surrounding environment of CSα; (e) interfacial features of CSα and β matrix; (f1, f2): DF-TEM images of CSα; (g) close-view of embedded α inside CSα; (h, i) SAED patterns of the corresponding areas in (g).
Fig. 13. TEM results demonstrating detailed microstructural features of CSα: (a) BF-TEM images of CSα; (b) HRTEM images of the embedded α and major α phases; (c) HRTEM images of an early-stage embedded α phase of the marked square region in (b); (d)-(f) IFFT micrographs of the marked square regions in (c) with corresponding FFT patterns inserted.
Fig. 14. Schematic diagrams demonstrating the exceptional and newly-discovered evolution mechanisms of α phase during TMP: (a) layered coarsening phenomenon; (b) phase separation and selective diffusion; (c) multi-interior twinning; (d) internal compositing.
Fig. 15. Pole figures of α phase for the alloy deformed under various conditions, corresponding to Fig. 3 and Fig. 5, with the deformation degree of 70%: (a) 900 °C/10 s−1; (b) 900 °C/1 s−1; (c) 900 °C/0.1 s−1; (d) 900 °C/0.01 s−1; (e) 900 °C/0.001 s−1; (f) 800 °C/0.01 s−1; (g) 850 °C/0.01 s−1; (h) 950 °C/0.01 s−1.
Fig. 16. Pole figures of α phase for the alloy deformed at various deformation degrees, corresponding to Fig. 4, with the deformation temperature and strain rate of 900 °C/0.1 s−1: (a) 30%; (b) 40%; (c) 50%; (d) 60%; (e) 70%; (f) 80%.
Fig. 17. Images showing thermal-dynamic correspondence of varied microstructural evolution processes: (a) 3D power dissipation efficiency (η) map; (b) 2D η map; (c) η distribution along the strain rate line (Fig. 17(b)) of 0.01 s−1; (d) η distribution along the temperature line (Fig. 17(b)) of 900 °C.
Fig. 18. Schematic mapping demonstrating the dominating microstructural evolution mechanism for the alloy during TMP with varied temperatures and strain rates: (a) α phase; (b) β phase.
[1] | J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, F.M.B. Fernandes, Acta Mater., 105 (2016), pp. 9-15. |
[2] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu, J. Mater. Sci. Technol., 107 (2022), pp. 227-242. |
[3] | B. Callegari, J.P. Oliveira, K. Aristizabal, R.S. Coelho, P.P. Brito, L. Wu, N. Schell, F.A. Soldera, F. Mücklich, H.C. Pinto, Mater. Charact., 165 (2020), Article 110400. |
[4] | L. Qi, S. He, C. Chen, B. Jiang, Y. Hao, H. Ye, R. Yang, K. Du, Acta Mater., 195 (2020), pp. 151-162. |
[5] | L. Choisez, L. Ding, M. Marteleur, H. Idrissi, T. Pardoen, P.J. Jacques, Nat. Commun., 11 (2020), p. 2110. |
[6] | B. Callegari, J.P. Oliveira, R.S. Coelho, P.P. Brito, N. Schell, F.A. Soldera, F. Mücklich, M.I. Sadik, J.L. García, H.C. Pinto, Mater. Charact., 162 (2020), Article 110180. |
[7] | Z. Du, Q. He, R. Chen, F. Liu, J. Zhang, F. Yang, X. Zhao, X. Cui, J. Cheng, J. Mater. Sci. Technol., 104 (2022), pp. 183-193. |
[8] | Z. Wu, H. Kou, N. Chen, Z. Zhang, F. Qiang, J. Fan, B. Tang, J. Li, J. Mater. Sci. Technol., 70 (2021), pp. 12-23. |
[9] | Z. Du, H. Guo, J. Liu, J. Cheng, X. Zhao, X. Wang, F. Liu, X. Cui, Mater.Sci. Eng. A, 791 (2020), Article 139677. |
[10] | C. Li, L. Huang, M. Zhao, S. Guo, J. Li, Mater.Sci. Eng. A, 814 (2021), Article 141231. |
[11] | K. Hua, Y. Zhang, W. Gan, H. Kou, B. Beausir, J. Li, C. Esling, Int. J. Plast., 119 (2019), pp. 200-214. |
[12] | H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, A. Chiba, Mater.Sci. Eng. A, 611 (2014), pp. 337-344. |
[13] | N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Mater.Sci. Eng. A, 490 (2008), pp. 369-377. |
[14] | K. Hua, X.Y. Xue, H.C. Kou, J.K. Fan, B. Tang, J.S. Li, J. Alloys Compd., 615 (2014), pp. 531-537. |
[15] | X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei, M. Zhan, Mater.Sci. Eng. A, 694 (2017), pp. 24-32. |
[16] | S. Balachandran, S. Kumar, D. Banerjee, Acta Mater., 131 (2017), pp. 423-434. |
[17] | D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, L. Zhou, Mater.Sci. Eng. A, 609 (2014), pp. 42-52. |
[18] | I. Weiss, S.L. Semiatin, Mater.Sci. Eng. A, 243 (1998), pp. 46-65. |
[19] | M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater., 84 (2015), pp. 124-135. |
[20] | S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang, Acta Mater., 106 (2016), pp. 374-387. |
[21] | K. Hua, Y. Zhang, W. Gan, H. Kou, J. Li, C. Esling, Acta Mater., 161 (2018), pp. 150-160. |
[22] | J. Fan, J. Li, Y. Zhang, H. Kou, L. Germain, C. Esling, Mater. Charact., 130 (2017), pp. 149-155. |
[23] | R. Dong, X. Zhang, C. Li, Y. Zhao, J. Tian, L. Wu, H. Hou, J. Mater. Sci. Technol., 97 (2022), pp. 165-168. |
[24] | L. Meng, T. Kitashima, T. Tsuchiyama, M. Watanabe, Mater.Sci. Eng. A, 771 (2020), Article 138640. |
[25] | E. Calvert, B. Wynne, N. Weston, A. Tudball, M. Jackson, J. Mater. Process. Technol., 254 (2018), pp. 158-170. |
[26] | A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, C. Lavender, Nat. Commun., 7 (2016), p. 11176. |
[27] | L.M. Kang, Y.J. Cai, X.C. Luo, Z.J. Li, X.B. Liu, Z. Wang, Y.Y. Li, C. Yang, Scr. Mater., 193 (2021), pp. 43-48. |
[28] | J. Fan, Z. Zhang, P. Gao, R. Yang, H. Li, B. Tang, H. Kou, Y. Zhang, C. Esling, J. Li, J. Mater. Sci. Technol., 38 (2020), pp. 135-147. |
[29] | S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, Acta Mater, 57 (2009), pp. 2136-2147. |
[30] | V.C. Opini, C.A.F. Salvador, K.N. Campo, E.S.N. Lopes, R.R. Chaves, R. Caram, Mater.Sci. Eng. A, 670 (2016), pp. 112-121. |
[31] | T. Ali, L. Wang, X. Cheng, H. Cheng, Y. Yang, A. Liu, X. Xu, Z. Zhou, Z. Ning, Z. Xu, X. Min, J. Mater. Sci. Technol., 78 (2021), pp. 238-246. |
[32] | F. Yang, B. Gabbitas, M. Dore, A. Ogereau, S. Raynova, L. Bolzoni, Mater. Chem. Phys., 211 (2018), pp. 406-413. |
[33] | F. Yang, B. Gabbitas, J. Alloys Compd., 695 (2017), pp. 1455-1461. |
[34] | C. Shen, C. Wang, M. Huang, N. Xu, S. van der Zwaag, W. Xu, J. Mater. Sci. Technol., 93 (2021), pp. 191-204. |
[35] | A. Winkelmann, G. Cios, T. Tokarski, G. Nolze, R. Hielscher, T. Kozieł, Acta Mater, 188 (2020), pp. 376-385. |
[36] | J.A. Bahena, N.M. Heckman, C.M. Barr, K. Hattar, B.L. Boyce, A.M. Hodge, Acta Mater, 195 (2020), pp. 132-140. |
[37] | R.K. Sabat, S.K. Sahoo, Mater. Des., 116 (2017), pp. 65-76. |
[38] | T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci., 60 (2014), pp. 130-207. |
[39] | M.W. Vaughan, W. Nasim, E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Acta Mater., 168 (2019), pp. 448-472. |
[40] | Z. Wu, H. Kou, N. Chen, M. Zhang, K. Hua, J. Fan, B. Tang, J. Li, J. Mater. Sci. Technol., 50 (2020), pp. 204-214. |
[41] | G. Nolze, M. Jürgens, J. Olbricht, A. Winkelmann, Acta Mater., 159 (2018), pp. 408-415. |
[42] | K. Huang, R.E. Loge, Mater. Des., 111 (2016), pp. 548-574. |
[43] | C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, D.L. Chen, Acta Mater., 154 (2018), pp. 311-324. |
[44] | X. Wang, L. Wang, L.S. Luo, H. Yan, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Des., 121 (2017), pp. 335-344. |
[45] | Y. Gui, L. Ouyang, Y. Xue, Q. Li, J. Mater. Sci. Technol., 90 (2021), pp. 205-224. |
[46] | R. Salloom, R. Banerjee, S.G. Srinivasan, J. Appl. Phys., 120 (2016), Article 175105. |
[47] | P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett., 94 (2013), pp. 92-94. |
[48] | J. Miao, S. Sutton, A.A. Luo, Mater.Sci. Eng. A, 834 (2022), Article 142619. |
[49] | J. Miao, S. Sutton, A.A. Luo, Mater.Sci. Eng. A, 777 (2020), Article 139048. |
[50] | J. Miao, C. Slone, S. Dasari, M. Ghazisaeidi, R. Banerjee, E.P. George, M.J. Mills, Acta Mater., 210 (2021), Article 116829. |
[51] | W. Chen, H. Wang, Y.C. Lin, X. Zhang, C. Chen, Y. Lv, K. Zhou, J. Mater. Sci. Technol., 43 (2020), pp. 220-229. |
[52] | A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, S. Suwas, Acta Mater., 164 (2019), pp. 153-164. |
[53] | D. Banerjee, J.C. Williams, Acta Mater., 61 (2013), pp. 844-879. |
[54] | X. Gao, W. Zeng, S. Zhang, Q. Wang, Acta Mater., 122 (2017), pp. 298-309. |
[55] | J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Mater. Des., 49 (2013), pp. 945-952. |
[56] | T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, Y.V.R.K. Prasad, Scr. Mater., 41 (1999), pp. 283-288. |
[57] | X. Li, S. Deng, S. Wang, H. Song, S. Zhang, K. Wang, D. Ouyang, Mater. Charact., 171 (2021), Article 110749. |
[58] | K. Chen, J. Luo, W. Han, M. Li, J. Alloys Compd., 848 (2020), Article 156141. |
[59] | L. Wang, X.G. Fan, M. Zhan, X.Q. Jiang, Y.F. Liang, H.J. Zheng, W.J. Liang, J. Mater. Process. Technol., 289 (2021), Article 116963. |
[60] | W. Chen, C. Li, X. Zhang, C. Chen, Y.C. Lin, K. Zhou, J. Alloys Compd., 783 (2019), pp. 709-717. |
[61] | I. Weiss, G.E. Welsch, F.H. Froes, D. Eylon, Titanium Sci. Technol., 3 (1984), pp. 1503-1510. |
[62] | M. Abdel Hady, K. Hinoshita, M. Morinaga, Scr. Mater., 55 (2006), pp. 477-480. |
[63] | K. Chou, E.A. Marquis, Acta Mater., 181 (2019), pp. 367-376. |
[64] | C. Lan, F. Chen, H. Chen, Y. Wu, X. Wu, J. Mater. Sci. Technol., 34 (2018), pp. 2100-2106. |
[65] | D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenço, M.A.R. Buzalaf, C.R. Grandini, J. Alloys Compd., 775 (2019), pp. 158-167. |
[66] | X. Fu, X. Wang, B. Zhao, Q. Zhang, S. Sun, J. Wang, W. Zhang, L. Gu, Y. Zhang, W. Zhang, W. Wen, Z. Zhang, L. Chen, Q. Yu, E. Ma, Nat. Mater. (2021), p. 290 |
[67] | P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, J. Mater. Sci. Technol., 39 (2020), pp. 56-73. |
[68] | P. Barriobero-Vila, J. Gussone, A. Stark, N. Schell, J. Haubrich, G. Requena, Nat. Commun., 9 (2018), p. 3426. |
[69] | M. Arul Kumar, M. Wroński, R.J. McCabe, L. Capolungo, K. Wierzbanowski, C.N. Tomé, Acta Mater., 148 (2018), pp. 123-132. |
[70] | J.W. Christian, S. Mahajan, Prog. Mater. Sci., 39 (1995), pp. 1-157. |
[71] | M. Niewczas, Acta Mater., 58 (2010), pp. 5848-5857. |
[72] | I. Kim, J. Kim, D.H. Shin, X.Z. Liao, Y.T. Zhu, Scr. Mater., 48 (2003), pp. 813-817. |
[73] | S. Zhao, R. Zhang, Q. Yu, J. Ell, O.R. Robert, M.M. Andrew, Science, 373 (2021), pp. 1363-1368. |
[74] | Y. Chong, M. Poschmann, R. Zhang, S. Zhao, S. Hooshmand Mohammad, E. Rothchild, L. Olmsted David, J.W. Morris, C. Chrzan Daryl, M. Asta, M. Minor Andrew, Sci. Adv., 6 (2020), p. eabc4060 |
[75] | Z. Liu, Z. Du, H. Jiang, T. Gong, X. Cui, J. Liu, J. Cheng, Prog. Nat. Sci., 31 (2021), pp. 731-741. |
[76] | Y.G. Liu, M.Q. Li, J. Alloys Compd., 773 (2019), pp. 860-871. |
[77] | T. Braisaz, P. Ruterana, G. Nouet, Philos. Mag. A, 76 (1997), pp. 63-84. |
[78] | Y. He, B. Li, C. Wang, S.X. Mao, Nat. Commun., 11 (2020), p. 2483. |
[79] | K. Hua, Y. Zhang, H. Kou, J. Li, W. Gan, J. Fundenberger, C. Esling, Acta Mater., 132 (2017), pp. 307-326. |
[80] | L. Lei, Q. Zhao, C. Wu, Y. Zhao, S. Huang, W. Jia, W. Zeng, J. Mater. Sci. Technol., 99 (2022), pp. 101-113. |
[81] | Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, R. Yang, Acta Mater., 126 (2017), pp. 372-382. |
[82] | Y. V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Mater. Trans. A, 15 (1984), pp. 1883-1892. |
[83] | Y. V.R.K. Prasad, J. Mater. Eng. Perform., 12 (2003), pp. 638-645. |
[84] | Q.Y. Zhao, F. Yang, R. Torrens, L. Bolzoni, Mater. Charact., 149 (2019), pp. 226-238. |
[85] | Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloy., 9 (2021), pp. 1923-1942. |
[86] | H. Chen, W. Xu, Q. Luo, Q. Li, Y. Zhang, J. Wang, K.C. Chou, J. Mater. Sci. Technol., 112 (2022), pp. 291-300. |
[87] | Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater., 193 (2021), pp. 127-131. |
[88] | Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (2016), pp. 2404-2415. |
[89] | Q. Li, X. Lin, Q. Luo, Y.a. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater., 29 (2022), pp. 32-48. |
[1] | Yu Pan, Jinshan Zhang, Jianzhuo Sun, Yanjun Liu, Ce Zhang, Rui Li, Fan Kuang, Xinxin Wu, Xin Lu. Enhanced strength and ductility in a powder metallurgy Ti material by the oxygen scavenger of CaB6 [J]. J. Mater. Sci. Technol., 2023, 137(0): 132-142. |
[2] | Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Liang Zuo. Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing [J]. J. Mater. Sci. Technol., 2023, 133(0): 183-194. |
[3] | Fan Bu, Yiyuan Zhang, Haoxiang Liu, Jun Wang, Eric Beaugnon, Jinshan Li, Yixuan He. Magnetic field intensity dependent microstructure evolution and recrystallization behavior in a Co-B eutectic alloy [J]. J. Mater. Sci. Technol., 2023, 138(0): 93-107. |
[4] | Zhongze Yang, Wenchen Xu, Weiqing Zhang, Yu Chen, Debin Shan. Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy [J]. J. Mater. Sci. Technol., 2023, 136(0): 121-139. |
[5] | Junjie Zhao, ChuanSong Wu, Lei Shi, Hao Su. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance [J]. J. Mater. Sci. Technol., 2023, 139(0): 31-46. |
[6] | SeungHyeok Chung, Ji Ho Shin, Ho Jin Ryu. Effects of dispersoid preforming via multistep sintering of oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 140(0): 187-200. |
[7] | Yonggang Fan, Kenan Li, Haodong Li, Cong Wang. Profiling interfacial reaction features between diamond and Cu-Sn-Ti active filler metal brazed at 1223 K [J]. J. Mater. Sci. Technol., 2022, 131(0): 100-105. |
[8] | Zhongyou Que, Zichen Wei, Xingyu Li, Lin Zhang, Yanhao Dong, Mingli Qin, Junjun Yang, Xuanhui Qu, Ju Li. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126(0): 203-214. |
[9] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao, Dong Qiu. Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 129(0): 228-239. |
[10] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[11] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[12] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[13] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[14] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[15] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||