J. Mater. Sci. Technol. ›› 2022, Vol. 126: 15-21.DOI: 10.1016/j.jmst.2022.04.004
Special Issue: High/Medium entropy alloys 2022
• Letter • Previous Articles Next Articles
Yiping Lu*(
), Xiaoxiang Wu*(
), Zhenghong Fuc, Qiankun Yangc, Yong Zhangc, Qiming Liua, Tianxin Lia, Yanzhong Tiand, Hua Tane, Zhiming Lic,*(
), Tongmin Wanga, Tingju Lia
Revised:2022-04-16
Published:2022-11-01
Online:2022-11-10
Contact:
Yiping Lu,Xiaoxiang Wu,Zhiming Li
About author:lizhiming@csu.edu.cn (Z. Li)Yiping Lu, Xiaoxiang Wu, Zhenghong Fu, Qiankun Yang, Yong Zhang, Qiming Liu, Tianxin Li, Yanzhong Tian, Hua Tan, Zhiming Li, Tongmin Wang, Tingju Li. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing[J]. J. Mater. Sci. Technol., 2022, 126: 15-21.
Fig. 1. Mechanical properties. (a) Engineering stress-strain curve of the current EHEA prepared by 3D printing (red solid line) comparing to that by casting (black dashed line). (b) Corresponding strain hardening rate and true stress-true strain curves of the EHEA prepared by the two different methods. (c) Mechanical properties comparison with other types of alloys prepared by 3D printing. (d) Mechanical properties comparison with other types of EHEAs prepared in different ways.
Fig. 2. XRD and SEM analysis. (a) XRD patterns showing the presence of FCC (L12) and BCC (B2) phases in the powders and the printed bulk. (b) SEM secondary electron image showing a representative heat affected zone. (c) EBSD phase map confirming the two-phase microstructure. (d) EBSD IPF (inverse pole figure) map of a representative sample region. (e) ECCI analysis from the region highlighted by the white rectangle in (c). (f) Enlarged ECC image from the highlighted region in (e).
Fig. 3. STEM analysis for the 3D-printed EHEA prior to tensile deformation. (a) STEM HAADF image showing rod-like composite microstructure. (b) Enlarged view showing the interface region. (c) HRSTEM HAADF image showing the FCC structure confirmed with FFT, with the beam parallel to [011] zone axis. (d) HRSTEM HAADF analysis showing the B2 phase, with the beam parallel to [111] zone axis. (e) STEM EDS analysis showing elemental distribution at the two phases.
Fig. 4. APT analysis of the phase structure in the 3D-printed EHEA. (a) Elemental distribution along the tip; nano-precipitates inside the B2 phase are highlighted with Cr isocomposition of 23 at.%. (b) 1D compositional profiles showing the elemental distribution across the FCC-B2 phase boundary marked in (a). (c) An example of the Cr-rich nano-precipitate in the B2 phase. (d) 1D proxigram of 10 nano-precipitates showing elemental distribution in the interface region.
Fig. 5. STEM analysis revealing the microstructure evolution at different deformation stages. At a local strain of 20%: (a) STEM HAADF image showing the populated dislocation structure and the two-phase microstructure. (b) STEM BF image showing the highlighted region from (a). (c) STEM HAADF images showing the sheared BCC (B2) phases with the serrated features, indicated by orange arrows. (d) STEM BF images showing the lamellar structure of the two-phases, and the lower insert presents the SAD pattern of ordered L12 phase. At a local strain of 60%: (e) STEM HAADF image showing the enhanced dislocation density within FCC phase. (f) STEM BF image of the same region in (e). (g) STEM HAADF image highlights the blurred phase boundary populated with dislocations. (h) STEM BF image of the same region in (g).
| [1] | N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol., 35 (2019), pp. 242-269. |
| [2] | Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater., 17 (2018), pp. 63-71. |
| [3] | C.S. Tiwary, P. Pandey, S. Sarkar, R. Das, S. Samal, K. Biswas, K. Chattopadhyay, Prog. Mater. Sci., 123 (2022), Article 100793. |
| [4] | B. Chanda, G. Potnis, P.P. Jana, J. Das, J. Alloy. Compd., 827 (2020), Article 154226. |
| [5] | Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci Rep., 4 (2014), p. 6200. |
| [6] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater.Sci. Eng. A, 375 (2004), pp. 213-218. |
| [7] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater., 6 (2004), pp. 299-303. |
| [8] | Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater., 124 (2017), pp. 143-150. |
| [9] | Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Scr. Mater., 187 (2020), pp. 202-209. |
| [10] | H. Jiang, D.X. Qiao, Y.P. Lu, Z. Ren, Z.Q. Cao, T.M. Wang, T.J. Li, Scr. Mater., 165 (2019), pp. 145-149. |
| [11] | X. Jin, Y. Zhou, L. Zhang, X.Y. Du, B.S. Li, Mater. Lett., 216 (2018), pp. 144-146. |
| [12] | L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, Y.H. Ge, L.H. Gao, G.J. Zhang, Intermetallics, 118 (2020), Article 106681. |
| [13] | H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Intermetallics, 113 (2019), Article 106569. |
| [14] | P. Shi, R. Li, Y. L.Y.B. Wen, Y. Zhong, W. Ren, Z. Shen, T. Zheng, J. Peng, X. Liang, P. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, Y.D. Wang, Science, 374 (2021), p. 6565. |
| [15] | X. Jin, Y. Zhou, L. Zhang, X.Y. Du, B.S. Li, Mater. Des., 143 (2018), pp. 49-55. |
| [16] | Z.S. Yang, Z.J. Wang, Q.F. Wu, T. Zheng, P.R. Zhao, J.K. Zhao, J.Y. Chen, Appl. Phys. A, 125 (2019), p. 208. |
| [17] | L.L. Ma, J.N. Wang, P.P. Jin, Mater. Res. Express., 7 (2020), Article 016566. |
| [18] | Q.F. Wu, Z.J. Wang, X.B. Hu, T. Zheng, Z.S. Yang, F. He, J.J. Li, J.C. Wang, Acta Mater, 182 (2020), pp. 278-286. |
| [19] | X. Jin, J. Bi, L. Zhang, Y. Zhou, X.Y. Du, Y.S. Liang, B.S. Li, J. Alloy. Compd., 770 (2019), pp. 655-661. |
| [20] | H. Jiang, D.X. Qiao, W.N. Jiao, K.M. Han, Y.P. Lu, P.K. Liaw, J. Mater. Sci. Technol., 61 (2021), pp. 119-124. |
| [21] | I. Baker, F.L. Meng, M. Wu, A. Brandenberg, J. Alloy. Compd., 656 (2016), pp. 458-464. |
| [22] | S.C. Luo, Y. Su, Z.M. Wang, Sci. China Mater., 63 (2020), pp. 1279-1290. |
| [23] | Y.C. Zhu, S.C. Zhou, Z.P. Xiong, Y.J. Liang, Y.F. Xue, L. Wang, Addit. Manuf., 39 (2021), Article 101901. |
| [24] | M.M. Ma, Z.M. Wang, X.Y. Zeng, Mater.Sci. Eng. A, 685 (2017), pp. 265-273. |
| [25] | Y. Gao, D.Y. Zhang, M. Cao, R.P. Chen, Z. Feng, R. Poprawe, J.H. Schleifenbaum, S. Ziegler, Mater.Sci. Eng. A, 767 (2019), Article 138327. |
| [26] | V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Mater. Des., 131 (2017), pp. 12-22. |
| [27] | D.Y. Deng, R.L. Peng, H. Brodin, J. Moverare, Mater.Sci. Eng. A, 713 (2018), pp. 294-306. |
| [28] | C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun., 11 (2020), p. 142. |
| [29] | H. Tan, M.L. Guo, A.T. Clare, X. Lin, J. Chen, W.D. Huang, J. Mater. Sci. Technol., 35 (2019), pp. 2027-2037. |
| [30] | J.S. Keist, T.A. Palmer, Mater. Des., 106 (2016), pp. 482-494. |
| [31] | Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater, 132 (2017), pp. 82-95. |
| [32] | C.L. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah, J. Alloy. Compd., 629 (2015), pp. 351-361. |
| [33] | D.Y. Zhang, D. Qiu, M.A. Gibson, Y.F. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature, 582 (2020), p. E5. |
| [34] | S. Tammas-Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd, P.B. Prangnell, Mater. Charact., 102 (2015), pp. 47-61. |
| [35] | A.D. Brandao, J. Gumpinger, M. Gschweitl, C. Seyfert, P. Hofbauer, T. Ghidini,3rd International Symposium on Fatigue Design and Material Defects, Lecco, ITALY. 7 (2017) 58-66. |
| [36] | X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater., 141 (2017), pp. 59-66. |
| [37] | X.X. Wu, D. Mayweg, D. Ponge, Z.M. Li. Mater.Sci. Eng. A, 802 (2021), Article 140661. |
| [1] | Jing Wang, Peng Xue, Laiqi Zhang, Li You, Xiaodong Zhu, Shuize Wang, Yong Zhong, Xinping Mao. Distribution behavior of inclusions in compact-strip-produced martensitic steel and its influence on mechanical properties [J]. J. Mater. Sci. Technol., 2023, 142(0): 98-111. |
| [2] | Wei Xiong, Amy X.Y. Guo, Shuai Zhan, Chain-Tsuan Liu, Shan Cecilia Cao. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142(0): 196-215. |
| [3] | Bing Lu, Yong Li, Wei Yu, Haiyao Wang, Yin Wang, Zhaodong Wang, Guangming Xu. Strength and ductility enhancement of twin-roll cast Al-Zn-Mg-Cu alloys with high solidification intervals through a synergistic segregation-controlling strategy [J]. J. Mater. Sci. Technol., 2023, 142(0): 225-239. |
| [4] | Huabing Li, Yu Han, Hao Feng, Gang Zhou, Zhouhua Jiang, Minghui Cai, Yizhuang Li, Mingxin Huang. Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 141(0): 184-192. |
| [5] | Jin-Ling Sun, Yun Feng, Zhang-Zhi Shi, Zhe Xue, Meng Cao, Sheng-Lian Yao, Zhen Li, Lu-Ning Wang. Biodegradable Zn-0.5Li alloy rib plate: Processing procedure development and in vitro performance evaluation [J]. J. Mater. Sci. Technol., 2023, 141(0): 245-256. |
| [6] | Meng Li, Zhang-Zhi Shi, Qiang Wang, Yang Cheng, Lu-Ning Wang. Zn-0.8Mn alloy for degradable structural applications: Hot compression behaviors, four dynamic recrystallization mechanisms, and better elevated-temperature strength [J]. J. Mater. Sci. Technol., 2023, 137(0): 159-175. |
| [7] | Fengchao Liu, Pingsha Dong, Abdul Sayeed Khan, Yuning Zhang, Randy Cheng, Alan Taub, Zongyi Ma. 3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing: Microstructure and property characterization [J]. J. Mater. Sci. Technol., 2023, 139(0): 126-136. |
| [8] | Baiyan Sui, Hua Lu, Xin Liu, Jiao Sun. High-purity Mg and Mg-1Ca alloys: Comparative assessment of the merits regarding degradation, osteogenesis, and biosafety for orthopedic applications [J]. J. Mater. Sci. Technol., 2023, 140(0): 58-66. |
| [9] | SeungHyeok Chung, Ji Ho Shin, Ho Jin Ryu. Effects of dispersoid preforming via multistep sintering of oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 140(0): 187-200. |
| [10] | Hui Wang, Zhuoming Xie, Xiang Cheng, Ke Jing, Linchao Zhang, Junfeng Yang, Rui Liu, Le Han, Lei Cao, Xianping Wang, Qianfeng Fang, Changsong Liu, Xuebang Wu. Microstructural evolution and thermal fatigue damage mechanism of second-phase dispersion strengthened tungsten composites under repetitive thermal loads [J]. J. Mater. Sci. Technol., 2023, 140(0): 221-232. |
| [11] | Jinxing Sun, Daorong Ye, Ji Zou, Xiaoteng Chen, Yue Wang, Jinsi Yuan, Haowen Liang, Hongqiao Qu, Jon Binner, Jiaming Bai. A review on additive manufacturing of ceramic matrix composites [J]. J. Mater. Sci. Technol., 2023, 138(0): 1-16. |
| [12] | W.S. Cai, H.Z. Lu, H.Z. Li, Z. Liu, H.B. Ke, W.H. Wang, C. Yang. Microstructural evolution and superelastic properties of ultrafine-grained NiTi-based shape memory alloy via sintering of amorphous ribbon precursor [J]. J. Mater. Sci. Technol., 2023, 138(0): 80-92. |
| [13] | Fan Bu, Yiyuan Zhang, Haoxiang Liu, Jun Wang, Eric Beaugnon, Jinshan Li, Yixuan He. Magnetic field intensity dependent microstructure evolution and recrystallization behavior in a Co-B eutectic alloy [J]. J. Mater. Sci. Technol., 2023, 138(0): 93-107. |
| [14] | Zhang-Zhi Shi, Xiang-Min Li, Sheng-Lian Yao, Yun-Zhi Tang, Xiao-Jing Ji, Qiang Wang, Xi-Xian Gao, Lu-Ning Wang. 300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn-Mn-Mg alloys: An in vitro study [J]. J. Mater. Sci. Technol., 2023, 138(0): 233-244. |
| [15] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
