J. Mater. Sci. Technol. ›› 2022, Vol. 126: 44-59.DOI: 10.1016/j.jmst.2022.02.038
• Review Article • Previous Articles Next Articles
Shiqi Li, Guoyi Huangb, Yiding Jiab, Bing Wangb,*(
), Hongcheng Wanga,*(
), Han Zhangb
Received:2021-11-11
Revised:2022-01-29
Accepted:2022-02-06
Published:2022-11-20
Online:2022-11-10
Contact:
Bing Wang,Hongcheng Wang
About author:wanghc@dgut.edu.cn (H. Wang)Shiqi Li, Guoyi Huang, Yiding Jia, Bing Wang, Hongcheng Wang, Han Zhang. Photoelectronic properties and devices of 2D Xenes[J]. J. Mater. Sci. Technol., 2022, 126: 44-59.
Fig. 1. Types of 2D Xenes (right panel) and their positions in the periodic table of elements (left panel). The optoelectronic properties and applications of related Xenes are summarized in the middle panel.
Fig. 2. Crystal structures of 2D Xenes (Group III, IV). (a) Top view of borophene. (b) Side view of borophene (Reproduced with permission [83]). (c) Crystal structure of gallenene: (i) The diamond-shaped gallenene monolayer structure, extracted from the block α-Ga along the 010. (ii) The gallenene monolayer honeycomb structure, extracted from the block α-Ga along the 100 direction (Reproduced with permission [86]). (d) Crystal structures of silicene (Reproduced with permission [42]). (e) Top view of the germanene configuration. The blue, yellow, and orange spheres represent Pt, protruding Ge, and other Ge atoms, respectively. (f) Simulated STM image. (Reproduced with permission [87]). (g) Top view and side view of the crystal structure of stanene. (Reproduced with permission [88]). (h) Structural model of a plumbene overlayer on Pd(111) (Reproduced with permission [54]).
Fig. 3. Crystal structures of 2D Xenes (Group V,VI). (a) 2D phosphorene structures with a folded structure. (Reproduced with permission [97]). (b) Top view and side view of a arsenene. (Reproduced with permission [126]). (c) Top view of antimonene (left), and side view of mono and bilayer antimonene lattices including water molecules as used for DFT calculations (Right) (Reproduced with permission [113]). (d) Sketch of a bismuthene layer placed on the threefold-symmetric SiC(0001) substrate. (Reproduced with permission [118]). (e) Left: the 0D atomic ring of selenene structure. Middle: the 1D spiral atomic chain of selenene structure. Right: the 2D atomic layer of selenene structure. (f) Rectangular tellurene and square tellurene (Reproduced with permission [127]).
| Group | Element | Xene | Band gap | Carrier mobility | Refs. |
|---|---|---|---|---|---|
| IIIIVVVI | B | Borophene | Metal | X: 14.8 × 105 cm2 V−1 s−1 Y: 28.4 × 105 cm2 V−1 s−1 | [ |
| Ga | Gallenene | Metal | - | [ | |
| Si | Silicene | 0.43 eV | ∼100 cm2 V−1 s−1 | [ | |
| Ge | Germanene | 0.79 eV | ∼104 cm2 V−1 s−1 | [ | |
| Sn | Stanene | 0.15 eV | (3-4) × 106 cm2 V−1 s−1 | [ | |
| Pb | Plumbene | 0.4 eV | - | [ | |
| P | Phosphorene | 0.3-2 eV | ∼103 cm2 V−1 s−1 | [ | |
| As | Arsenene | 1.2-1.4 eV | ∼103 cm2 V−1 s−1 | [ | |
| Sb | Antimonene | 2.28 eV | ∼103 cm2 V−1 s−1 | [ | |
| Bi | Bismuthene | 0.555 eV | ∼103 cm2 V−1 s−1 | [ | |
| Se | Selenene | 0.1 eV | - | [ | |
| Te | Tellurene | 0.31-1.3 eV | ∼105 cm2 V−1 s−1 | [ |
Table 1. Band gap and carrier mobility of 2D Xenes.
| Group | Element | Xene | Band gap | Carrier mobility | Refs. |
|---|---|---|---|---|---|
| IIIIVVVI | B | Borophene | Metal | X: 14.8 × 105 cm2 V−1 s−1 Y: 28.4 × 105 cm2 V−1 s−1 | [ |
| Ga | Gallenene | Metal | - | [ | |
| Si | Silicene | 0.43 eV | ∼100 cm2 V−1 s−1 | [ | |
| Ge | Germanene | 0.79 eV | ∼104 cm2 V−1 s−1 | [ | |
| Sn | Stanene | 0.15 eV | (3-4) × 106 cm2 V−1 s−1 | [ | |
| Pb | Plumbene | 0.4 eV | - | [ | |
| P | Phosphorene | 0.3-2 eV | ∼103 cm2 V−1 s−1 | [ | |
| As | Arsenene | 1.2-1.4 eV | ∼103 cm2 V−1 s−1 | [ | |
| Sb | Antimonene | 2.28 eV | ∼103 cm2 V−1 s−1 | [ | |
| Bi | Bismuthene | 0.555 eV | ∼103 cm2 V−1 s−1 | [ | |
| Se | Selenene | 0.1 eV | - | [ | |
| Te | Tellurene | 0.31-1.3 eV | ∼105 cm2 V−1 s−1 | [ |
Fig. 4. (a) Bottom-up synthesis. (b) Top-down synthesis (Reproduced with permission [2]). (c) AFM image of SBP thin film on silicon substrate: (i) Shows the spacing between each layer. (ii) It shows that the gap between the two layers is about 8.5 Å (Reproduced with permission [136]). (d) The experimental (i) and characterization (ii) of borophene formed on Ag(111) substrate by MBE (Reproduced with permission [44]). (e) Raman spectrum of Bi peeled off to the flexible epoxy resin by mechanical peeling. Inset: Photograph of flexible Bi after epoxy peeling (Reproduced with permission [149]). (f) The AFM height image of the solvent exfoliated BP nanosheets deposited on SiO2/Si substrates with different heights (Reproduced with permission [150]).
Fig. 5. (a) The relative transmittance changes measured on 25 nm, 350 nm and 1100 nm thick BP films in the direction of the input polarizing armchair. (Reproduced with permission [171]). (b) Schematic diagram of the experimental setup for nonlinear optics. i) Orientation of nanoflakes without laser irradiation. ii) The arrangement of nano flakes under laser irradiation. (Reproduced with permission [115]). (c) Saturable absorption mechanism of bismuthene (Reproduced with permission [123]). (d): i) Absorption coefficient of borophene, and ii) reflectivity of borophene along the a and b directions. (Reproduced with permission [84]). (e) The bandstructure of BP in the direction of armchair (Z-L) and zigzag (Z-T') is determined by ARPES measurement. (Reproduced with permission [174]). (f) Single-layer BP simulation ground state exciton wave function. (g) Polarization dependent PL spectrum of BP (Reproduced with permission [175]).
Fig. 6. (a) Extinction ratio of bilayer tellurene. (i) covalent bond 1-, (ii) close-packed nonbond 2-, and (iii) nonbond 3-directions. (Reproduced with permission [182]). (b) Raman spectra of tellurene with different thicknesses (Reproduced with permission [130]). (c) Optical absorption spectrum of FL-α-Te. (i, ii) The polarization direction of the incident light is along x, y and z, and the absorbance of each layer of 2L- and 6L-α-Te. (iii) The absorbance of each layer along the y direction of the FL-α-Te with a thickness of 2 L to 6 L (Reproduced with permission [183]).
Fig. 7. (a) Spectra in fiber laser with BP as SA (Reproduced with permission [43]). (b) Pulse sequence output based on bismuthene laser is 250 mW (Reproduced with permission [123]). (c) Integrate BP as SA into ultrafast laser devices (Reproduced with permission [202]).
| Time | Xene | Mechanism | R (A/W) | D* (Jones) |
|---|---|---|---|---|
| 2015 | Phosphorene | PCE | 9 × 104 | 3 × 1013 |
| 2019 | Selenene | PVE | 0.408 | 1.3 × 1013 |
| 2019 | Tellurene | PVE | 15 | 1.24 × 108 |
| 2020 | Germanene | PEC | 2.4 × 10−5 | 6.7 × 107 |
| 2020 | Antimonene/CdS QDs | PEC | 1 × 10−5 | − |
| 2021 | Borophene/n-Si | PVE | 1.04 | 1.27 × 1011 |
| 2021 | Silicene/MoS2 | PCE | 5.66 × 105 | 4.76 × 1010 |
| 2021 | Bismuthene/Si | PVE | 80 | 1.9 × 1010 |
Table 2. Summary of 2D-Xenes-based photodetectors by time.
| Time | Xene | Mechanism | R (A/W) | D* (Jones) |
|---|---|---|---|---|
| 2015 | Phosphorene | PCE | 9 × 104 | 3 × 1013 |
| 2019 | Selenene | PVE | 0.408 | 1.3 × 1013 |
| 2019 | Tellurene | PVE | 15 | 1.24 × 108 |
| 2020 | Germanene | PEC | 2.4 × 10−5 | 6.7 × 107 |
| 2020 | Antimonene/CdS QDs | PEC | 1 × 10−5 | − |
| 2021 | Borophene/n-Si | PVE | 1.04 | 1.27 × 1011 |
| 2021 | Silicene/MoS2 | PCE | 5.66 × 105 | 4.76 × 1010 |
| 2021 | Bismuthene/Si | PVE | 80 | 1.9 × 1010 |
Fig. 8. (a, b) Response of photodetectors based on few layers of black phosphorous at VBG = −80 V (Reproduced with permission [46]). (c) At 300 K and 80 K, the I-V characteristics of the photodetector under different light intensity conditions of 530 nm. (d) At 300 K and 80 K, Switching ratio of different gate voltages (Reproduced with permission [213]). (e) Rise time (tr) and decay time (td) of germanene photodetector (Reproduced with permission [214]). (f) schematic view of a borophene-based photodetector (Reproduced with permission [215]). (g) Responsivity and detectivity of the silicene/MoS2-based photodetector at different intensities of the illuminating light [216]). (h) Photocurrent generation in 2D Bi/Si(111) optoelectronic devices [217]).
Fig. 9. (a) The three-dimensional schematic diagram of the BP/MRR hybrid all-optical modulator. (b) Frequency response of modulator (Reproduced with permission [222]). (c) SXPM all-optical modulation system with two cross lights: (i) Diffraction ring images of different powers. (ii) Modulator based on 2D Te Ns realizes switch mode (Reproduced with permission [223]). (d) Energy level diagrams of the most commonly used materials of 1-5 layers of phosphorene and OPV, DSSC, QDSSC and PSC (Reproduced with permission [72]).
Fig. 10. (a) XPS VB spectrum of CS and bulk BP. (b) Photocatalysis principle diagram of FPS system under visible light irradiation. (c) Photocatalysis principle diagram of CS system under visible light irradiation (Reproduced with permission [234]). (d) Schematic diagram of Z scheme photocatalytic water splitting using BP/BiVO4 under visible light irradiation (Reproduced with permission [231]). (e) Nyquist plot of Bi NS with different thicknesses. (f) Bismuthene NS has long-term stability at a potential of −0.58 V (Reproduced with permission [233]).
Fig. 11. (a) Using std-BP film to detect NH3 gas, the relationship between resistance and time. (b) The relationship between signal-to-noise ratio and concentration (Reproduced with permission [170]). (c) Based on the tellurene sensor schematic. (d) I-V response of tellurene sensors (Reproduced with permission [235]). 2D Xenes optoelectronic devices explored by optimizing fabrication methods, constructing heterojunctions, etc.
| [1] | A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, D. Akinwande, Nat. Mater., 16 (2017), pp. 163-169. |
| [2] | W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma, J. Ouyang, B. Qi, J. Wang, N. Xie, C. Kang, H. Zhang, O.C. Farokhzad, J.S. Kim, Chem. Soc. Rev., 48 (2019), pp. 2891-2912. |
| [3] | B. Wang, S. Zhong, Y. Ge, H. Wang, X. Luo, H. Zhang, Nano Res., 13 (2020), pp. 891-918. |
| [4] | Z. Zheng, J. Yao, B. Wang, G. Yang, Nanotechnology, 28 (2017), Article 415501. |
| [5] | L. Yu, L. Hu, B. Anasori, Y.T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett., 3 (2018), pp. 1597-1603. |
| [6] | K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004), pp. 666-669 |
| [7] | P. Mustonen, D.M.A. Mackenzie, H. Lipsanen, Front. Optoelectron., 13 (2020), pp. 91-113. |
| [8] | Y. Yao, Z. Cheng, J. Dong, X. Zhang, Front. Optoelectron., 13 (2020), pp. 129-138. |
| [9] | G. Bai, S. Yuan, Y. Zhao, Z. Yang, S.Y. Choi, Y. Chai, S.F. Yu, S.P. Lau, J. Hao, Adv. Mater., 28 (2016), pp. 7472-7477. |
| [10] | X. Chen, N.C. Berner, C. Backes, G.S. Duesberg, A.R. McDonald, Angew. Chem. Int. Ed., 55 (2016), pp. 5803-5808. |
| [11] | H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan, D. Mandrus, D. Tomanek, Z. Zhou, Nano Lett., 16 (2016), pp. 1896-1902. |
| [12] | L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P.Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P.D. Ye, Nano Lett., 14 (2014), pp. 6275-6280. |
| [13] | A. Weston, Y. Zou, V. Enaldiev, A. Summerfield, N. Clark, V. Zolyomi, A. Graham, C. Yelgel, S. Magorrian, M. Zhou, J. Zultak, D. Hopkinson, A. Barinov, T.H. Bointon, A. Kretinin, N.R. Wilsons, P.H. Beton, V.I. Fal'ko, S.J. Haigh, R. Gorbachev, Nat. Nanotechnol., 15 (2020), pp. 592-597. |
| [14] | S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim, Y.H. Lee, Nano Lett., 16 (2016), pp. 188-193. |
| [15] | S.J. Yun, D.L. Duong, D.M. Ha, K. Singh, T.L. Phan, W. Choi, Y.M. Kim, Y.H. Lee, Adv. Sci., 7 (2020), p. 3076 |
| [16] | M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater., 26 (2014), pp. 992-1005. |
| [17] | M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Adv. Mater., 29 (2017), Article 1702410. |
| [18] | G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, W. Jin, J. Membr. Sci., 548 (2018), pp. 548-558. |
| [19] | K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, Q. Peng, Sci. Chin. Mater., 61 (2018), pp. 728-736. |
| [20] | A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, J. Mater. Chem. A, 7 (2019), pp. 269-277. |
| [21] | A. Feng, T. Hou, Z. Jia, Y. Zhang, F. Zhang, G. Wu, Nanomaterials, 10 (2020), p. 162. |
| [22] | Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, Y. Liu, Adv. Sci., 5 (2018), Article 1800750. |
| [23] | C. Cai, R. Wang, S. Liu, X. Yan, L. Zhang, M. Wang, Q. Tong, T. Jiao, Colloids Surf. A, 589 (2020), Article 124468. |
| [24] | A.K. Geim, I.V. Grigorieva, Nature, 499 (2013), pp. 419-425. |
| [25] | S. Wang, X. Wang, J.H. Warner, Acs Nano, 9 (2015), pp. 5246-5254. |
| [26] | S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Sci. Rep., 3 (2013), p. 2666. |
| [27] | Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, Z. Guo, Appl. Surf. Sci., 465 (2019), pp. 154-163. |
| [28] | Y. Lin, T.V. Williams, T.-. B. Xu, W. Cao, H.E. Elsayed-Ali, J.W. Connell, J. Phys. Chem. C, 115 (2011), pp. 2679-2685. |
| [29] | K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Nano Lett., 12 (2012), pp. 714-718. |
| [30] | L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater., 9 (2010), pp. 430-435. |
| [31] | Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.F. Yu, P.K. Chu, Adv. Funct. Mater., 25 (2015), pp. 6996-7002. |
| [32] | S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gomez-Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Chem. Soc. Rev., 47 (2018), pp. 982-1021. |
| [33] | Y. Zhang, K. He, C.Z. Chang, C.L. Song, L.L. Wang, X. Chen, J.F. Jia, Z. Fang, X. Dai, W.Y. Shan, S.Q. Shen, Q. Niu, X.L. Qi, S.C. Zhang, X.C. Ma, Q.K. Xue, Nat. Phys., 6 (2010), pp. 584-588. |
| [34] | G. Zhang, X. Tang, X. Fu, W. Chen, B. Shabbir, H. Zhang, Q. Liu, M. Gong, Nanoscale, 11 (2019), pp. 1762-1769. |
| [35] | B. Wang, S.P. Zhong, Z.B. Zhang, Z.Q. Zheng, Y.P. Zhang, H. Zhang, Appl. Mater. Today, 15 (2019), pp. 115-138. |
| [36] | N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, P.M. Ajayan, Adv. Mater., 32 (2020), Article 2070052. |
| [37] | G. Wang, R. Pandey, S.P. Karna, Appl. Phys. Lett., 106 (2015), Article 173104. |
| [38] | C. Xie, F. Yan, Small, 13 (2017), Article 1701822. |
| [39] | B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas'ev, A. Stesmans, 2D Mater., 1 (2014), Article 021004. |
| [40] | A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Nat. Rev. Chem., 1 (2017), p. 0014. |
| [41] | W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Chem. Soc. Rev., 47 (2018), pp. 7203-7212. |
| [42] | J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C.C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, K. Wu, Prog. Mater. Sci., 83 (2016), pp. 24-151. |
| [43] | M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang, Adv. Opt. Mater., 7 (2019), Article 1800224. |
| [44] | S.Y. Xie, Y. Wang, X.B. Li, Adv. Mater., 31 (2019), Article 1900392. |
| [45] | S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed., 55 (2016), pp. 1666-1669. |
| [46] | J. Wu, G.K.W. Koon, D. Xiang, C. Han, C.T. Toh, E.S. Kulkarni, I. Verzhbitskiy, A. Carvalho, A.S. Rodin, S.P. Koenig, G. Eda, W. Chen, A.H. Castro Neto, B. Oezyilmaz, Acs Nano, 9 (2015), pp. 8070-8077. |
| [47] | W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li, S. Chen, P.E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, O.C. Farokhzad, Angew. Chem. Int. Ed., 56 (2017), pp. 11896-11900. |
| [48] | A.J. Mannix, Z. Zhang, N.P. Guisinger, B.I. Yakobson, M.C. Hersam, Nat. Nanotechnol., 13 (2018), pp. 444-450. |
| [49] | Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, H. Zhang, Adv. Opt. Mater., 6 (2018), Article 1701287. |
| [50] | J.S. Ponraj, Z.-. Q. Xu, S.C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, Q. Bao, Nanotechnology, 27 (2016), Article 462001. |
| [51] | Q. Guo, K. Wu, Z. Shao, E.T. Basore, P. Jiang, J. Qiu, Adv. Opt. Mater., 7 (2019), Article 1900322. |
| [52] | P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.Le Lay, Phys. Rev. Lett., 108 (2012), Article 155501. |
| [53] | R. John, B. Merlin, J. Phys. Chem. Solids, 110 (2017), pp. 307-315. |
| [54] | J. Yuhara, B. He, N. Matsunami, M. Nakatake, G.Le Lay, Adv. Mater., 31 (2019), Article 1901017. |
| [55] | Y. Wang, M. Ye, M. Weng, J. Li, X. Zhang, H. Zhang, Y. Guo, Y. Pan, L. Xiao, J. Liu, F. Pan, J. Lu, ACS Appl. Mater. Interfaces, 9 (2017), pp. 29273-29284. |
| [56] | X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Chem. Soc. Rev., 46 (2017), pp. 2127-2157. |
| [57] | A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett., 108 (2012), Article 245501. |
| [58] | L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.J. Gao, Nano Lett., 13 (2013), pp. 685-690. |
| [59] | J. Zhou, Z. Li, M. Ying, M. Liu, X. Wang, X. Wang, L. Cao, H. Zhang, G. Xu, Nanoscale, 10 (2018), pp. 5060-5064. |
| [60] | J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, H. Zhang, ACS Photonics, 4 (2017), pp. 1466-1476. |
| [61] | J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, H. Zhang, Adv. Opt. Mater., 5 (2017), Article 1700026. |
| [62] | J. Yan, P. Verma, Y. Kuwahara, K. Mori, H. Yamashita, Small Methods, 2 (2018), Article 1800212. |
| [63] | Y. Xu, W. Wang, Y. Ge, H. Guo, X. Zhang, S. Chen, Y. Deng, Z. Lu, H. Zhang, Adv. Funct. Mater., 27 (2017)1702437. |
| [64] | G. Wang, R. Pandey, S.P. Karna, ACS Appl. Mater. Interfaces, 7 (2015), pp. 11490-11496. |
| [65] | E. Akturk, O.U. Akturk, S. Ciraci, Phys. Rev. B, 94 (2016), Article 014115. |
| [66] | X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Nano Lett., 10 (2010), pp. 562-566. |
| [67] | B. Wang, Z. Zheng, H. Wu, L. Zhu, Nanoscale Res. Lett., 9 (2014), p. 111. |
| [68] | M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P.N. Prasad, Nano Today, 25 (2019), pp. 135-155. |
| [69] | J.W. Choi, D. Wang, D. Wang, Chemnanomat, 2 (2016), pp. 560-561. |
| [70] | F. Pielnhofer, T.V. Menshchikova, I.P. Rusinov, A. Zeugner, I.Y. Sklyadneva, R. Heid, K.P. Bohnen, P. Golub, A.I. Baranov, E.V. Chulkov, A. Pfitzner, M. Ruck, A. Isaeva, J. Mater. Chem. C, 5 (2017), pp. 4752-4762. |
| [71] | M.N. Brunetti, O.L. Berman, R.Y. Kezerashvili, Phys. Lett. A, 383 (2019), pp. 482-486. |
| [72] | M. Batmunkh, M. Bat-Erdene, J.G. Shapter, Adv. Mater., 28 (2016), pp. 8586-8617. |
| [73] | A. Jain, A.J.H. McGaughey, Sci. Rep., 5 (2015), p. 8501 |
| [74] | V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys., 17 (2015), pp. 992-1000. |
| [75] | H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano, 8 (2014), pp. 4033-4041. |
| [76] | V. Nagarajan, R. Chandiramouli, Phys. B Condens. Matter, 577 (2020), Article 412405 |
| [77] | J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.Y. Choi, B. Luther-Davies, Y. Lu, Nat. Commun., 7 (2016), p. 10450. |
| [78] | G. Wang, R. Pandey, S.P. Karna, Nanoscale, 7 (2015), pp. 524-531. |
| [79] | J. Yang, R. Xu, J. Pei, Y.W. Myint, F. Wang, Z. Wang, S. Zhang, Z. Yu, Y. Lu, Light Sci. Appl., 4 (2015), p. e312. |
| [80] | S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, ACS Nano, 8 (2014), pp. 9590-9596. |
| [81] | A. Ziletti, A. Carvalho, D.K. Campbell, D.F. Coker, A.H.C. Neto, Phys. Rev. Lett., 114 (2015), Article 046801. |
| [82] | W. Meng, X. Liu, H. Song, Y. Xie, X. Shi, M. Dargusch, Z.G. Chen, Z. Tang, S. Lu, Nano Today, 40 (2021), Article 101273. |
| [83] | Z.Q. Wang, T.Y. Lu, H.Q. Wang, Y.P. Feng, J.C. Zheng, Front. Phys., 14 (2019), p. 33403. |
| [84] | B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhua, J. Mater. Chem. C, 4 (2016), pp. 3592-3598. |
| [85] | V. Kochat, A. Samanta, Y. Zhang, S. Bhowmick, P. Manimunda, S.A.S. Asif, A.S. Stender, R. Vajtai, A.K. Singh, C.S. Tiwary, P.M. Ajayan, Sci. Adv., 4 (2018) e1701373 |
| [86] | M.L. Tao, Y.B. Tu, K. Sun, Y.L. Wang, Z.B. Xie, L. Liu, M.X. Shi, J.Z. Wang, 2D Mater., 5 (2018), Article 035009. |
| [87] | L. Li, S.Z. Lu, J. Pan, Z. Qin, Y.Q. Wang, Y. Wang, G.Y. Cao, S. Du, H.J. Gao, Adv. Mater., 26 (2014), pp. 4820-4824. |
| [88] | F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Nat. Mater., 14 (2015), pp. 1020-1025. |
| [89] | A. Kara, H. Enriquez, A.P. Seitsonen, L. C.L.Y. Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep., 67 (2012), pp. 1-18. |
| [90] | C.C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett., 107 (2011), Article 076802. |
| [91] | X.L. Yu, L. Huang, J. Wu, Phys. Rev. B, 95 (2017), Article 125113. |
| [92] | Y. Li, J. Zhang, B. Zhao, Y. Xue, Z. Yang, Phys. Rev. B, 99 (2019), Article 195402. |
| [93] | K.W. Lee, C.E. Lee, Curr. Appl. Phys., 20 (2020), pp. 413-418. |
| [94] | D. Hashemi, H. Iizuka, RSC Adv., 10 (2020), pp. 6884-6892. |
| [95] | D.K. Das, J. Sarkar, S.K. Singh, Comput. Mater. Sci., 151 (2018), pp. 196-203. |
| [96] | G. Bihlmayer, J. Sassmannshausen, A. Kubetzka, S. Bluegel, K. von Bergmann, R. Wiesendanger, Phys. Rev. Lett., 124 (2020), Article 126401. |
| [97] | P. Chen, N. Li, X. Chen, W.J. Ong, X. Zhao, 2D Mater., 5 (2018), Article 014002. |
| [98] | X. Wang, S. Lan, Adv. Opt. Photonics, 8 (2016), pp. 618-655. |
| [99] | D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Adv. Funct. Mater., 29 (2019), Article 1903419. |
| [100] | B. Li, C. Lai, G. Zeng, D. Huang, L. Qin, M. Zhang, M. Cheng, X. Liu, H. Yi, C. Zhou, F. Huang, S. Liu, Y. Fu, Small, 15 (2019), Article 1804565. |
| [101] | Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Angew. Chem. Int. Ed., 55 (2016), pp. 13849-13853. |
| [102] | Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.J. Han, H. Wang, Q. Xia, T.P. Ma, T. Mueller, F. Xia, Nano Lett., 16 (2016), pp. 4648-4655. |
| [103] | A.N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Koepf, T. Nilges, C. Zhou, ACS Nano, 9 (2015), pp. 5618-5624. |
| [104] | Z. Zhu, D. Tomanek, Phys. Rev. Lett., 112 (2014), Article 176802. |
| [105] | J. Zhang, S. Chen, Y. Ma, D. Wang, J. Zhang, Y. Wang, W. Li, Z. Yu, H. Zhang, F. Yin, Z. Li, J. Mater. Chem. B, 6 (2018), pp. 4065-4070. |
| [106] | X. Liu, C.R. Ryder, S.A. Wells, M.C. Hersam, Small Methods, 1 (2017), Article 1700143. |
| [107] | H. Shu, Y. Li, X. Niu, J. Guo, J. Mater. Chem. C, 6 (2018), pp. 83-90. |
| [108] | R. Gusmao, Z. Sofer, D. Bousa, M. Pumera, Angew. Chem. Int. Ed., 56 (2017), pp. 14417-14422. |
| [109] | B. Meshginqalam, J. Barvestani, IEEE Sens. J., 20 (2020), pp. 5984-5991. |
| [110] | Y.J. Wang, K.G. Zhou, G. Yu, X. Zhong, H.L. Zhang, Sci. Rep., 6 (2016), p. 24981. |
| [111] | W.H. Xiao, F. Xie, X.J. Zhang, Y.F. Chu, J.P. Liu, H.Y. Wang, Z.Q. Fan, M.Q. Long, K.Q. Chen, Phys. Lett. A, 383 (2019), pp. 1629-1635. |
| [112] | G. Jagannath, B. Eraiah, A. Gaddam, H. Fernandes, D. Brazete, K. Jayanthi, K.N. Krishnakanth, S.V. Rao, J.M.F. Ferreira, K. Annapurna, A.R. Allu, J. Phys. Chem. C, 123 (2019), pp. 5591-5602. |
| [113] | P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D.A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, F. Zamora, Adv. Mater., 28 (2016), pp. 6332-6336. |
| [114] | T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B.N. Shiyananju, L. Zhang, X. Cui, H. Zhang, Q. Bao, Nat. Commun., 10 (2019), p. 28. |
| [115] | L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, H. Zhang, Adv. Opt. Mater., 5 (2017), Article 1700301. |
| [116] | C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, F. Zamora, Angew. Chem. Int. Ed., 55 (2016), pp. 14343-14347. |
| [117] | T. Nagao, J.T. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, T. Sakurai, Phys. Rev. Lett., 93 (2004), Article 105501. |
| [118] | F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schafer, R. Claessen, Science, 357 (2017), pp. 287-290. |
| [119] | Q.Q. Yang, R.T. Liu, C. Huang, Y.F. Huang, L.F. Gao, B. Sun, Z.P. Huang, L. Zhang, C.X. Hu, Z.Q. Zhang, C.L. Sun, Q. Wang, Y.L. Tang, H.L. Zhang, Nanoscale, 10 (2018), pp. 21106-21115. |
| [120] | Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, H. Zhang, J. Mater. Chem. C, 7 (2019), pp. 871-878. |
| [121] | L. Lu, W. Wang, L. Wu, X. Jiang, Y. Xiang, J. Li, D. Fan, H. Zhang, ACS Photonics, 4 (2017), pp. 2852-2861. |
| [122] | L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S.C. Dhanabalan, J.S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang, Laser Photonics Rev., 12 (2018), Article 1870012. |
| [123] | B. Guo, S.H. Wang, Z.X. Wu, Z.X. Wang, D.H. Wang, H. Huang, F. Zhang, Y.Q. Ge, H. Zhang, Opt. Express, 26 (2018), pp. 22750-22760. |
| [124] | T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, H. Zhang, Nanoscale, 10 (2018), pp. 17617-17622. |
| [125] | M. Pumera, Z. Sofer, Adv. Mater., 29 (2017), Article 1605299. |
| [126] | S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed., 54 (2015), pp. 3112-3115. |
| [127] | L. Xian, A. Perez Paz, E. Bianco, P.M. Ajayan, A. Rubio, 2D Mater., 4 (2017), Article 041003. |
| [128] | Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu, W. Liang, Y. Zhang, C. Ma, Z. Guo, X. Luo, H. Zhang, Nano Micro Lett., 12 (2020), p. 99. |
| [129] | J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang, Y. Ge, Y. Song, C. Xing, D. Fan, H. Zhang, Nanoscale, 11 (2019), pp. 6235-6242. |
| [130] | Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W.A. Goddard, M.J. Kim, X. Xu, P.D. Ye, W. Wu, Nat. Electron., 1 (2018), pp. 228-236. |
| [131] | T. Cheng, H. Lang, Z. Li, Z. Liu, Z. Liu, Phys. Chem. Chem. Phys., 19 (2017), pp. 23942-23950. |
| [132] | O.E. Parfenov, D.V. Averyanov, A.M. Tokmachev, I.S. Sokolov, I.A. Karateev, A.N. Taldenkov, V.G. Storchak, Adv. Funct. Mater., 30 (2020), Article 1910643. |
| [133] | N. Ferdous, M.S. Islam, J. Park, A. Hashimoto, AIP Adv., 9 (2019), Article 015117 |
| [134] | Y. Gao, K. Wu, W. Hu, J. Yang, Phys. Chem. Chem. Phys., 22 (2020), pp. 28414-28422. |
| [135] | J. Yan, X. Zhang, Y. Pan, J. Li, B. Shi, S. Liu, J. Yang, Z. Song, H. Zhang, M. Ye, R. Quhe, Y. Wang, J. Yang, F. Pan, J. Lu, J. Mate. Chem. C, 6 (2018), pp. 6153-6163. |
| [136] | J.B. Smith, D. Hagaman, H.F. Ji, Nanotechnology, 27 (2016), Article 215602. |
| [137] | G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, S. Wen, ACS Appl. Mater. Interfaces, 5 (2013), pp. 10288-10293. |
| [138] | Z. Sun, Z. Liu, J. Li, G.-.A. Tai, S.-.P. Lau, F. Yan, Adv. Mater., 24 (2012), pp. 5878-5883. |
| [139] | T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, M. Jiang, Nat. Mater., 15 (2016), p. 43. |
| [140] | N. Briggs, S. Subramanian, Z. Lin, X. Li, X. Zhang, K. Zhang, K. Xiao, D. Geohegan, R. Wallace, L.-.Q. Chen, M. Terrones, A. Ebrahimi, S. Das, J. Redwing, C. Hinkle, K. Momeni, A. van Duin, V. Crespi, S. Kar, J.A. Robinson, 2D Mater., 6 (2019), Article 022001. |
| [141] | H. Li, Y. Li, A. Aljarb, Y. Shi, L.J. Li, Chem. Rev., 118 (2018), pp. 6134-6150. |
| [142] | Q. Fu, X. Bao, Chem. Soc. Rev., 46 (2017), pp. 1842-1874. |
| [143] | K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J.B. Neaton, J. Wu, Nano Lett., 14 (2014), pp. 5097-5103. |
| [144] | Z. Liu, S.P. Lau, F. Yan, Chem. Soc. Rev., 44 (2015), pp. 5638-5679. |
| [145] | Y. Shi, H. Li, L.J. Li, Chem. Soc. Rev., 44 (2015), pp. 2744-2756. |
| [146] | C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, Nat. Mater., 14 (2015), pp. 1135-1141. |
| [147] | H. Yin, X. Zhang, J. Lu, X. Geng, Y. Wan, M. Wu, P. Yang, J. Mater. Sci., 55 (2020), pp. 990-996. |
| [148] | A. Mazaheri, M. Javadi, Y. Abdi, ACS Appl. Mater. Interfaces, 13 (2021), pp. 8844-8850. |
| [149] | E.S. Walker, S.R. Na, D. Jung, S.D. March, J.S. Kim, T. Trivedi, W. Li, L. Tao, M.L. Lee, K.M. Liechti, D. Akinwande, S.R. Bank, Nano Lett., 16 (2016), pp. 6931-6938. |
| [150] | J. Kang, J.D. Wood, S.A. Wells, J.H. Lee, X. Liu, K.S. Chen, M.C. Hersam, Acs Nano, 9 (2015), pp. 3596-3604. |
| [151] | C. Muratore, A.A. Voevodin, N.R. Glavin, Thin Solid Films, 688 (2019), Article 137500. |
| [152] | Y. Wang, L. Gan, J. Chen, R. Yang, T. Zhai, Sci. Bull., 62 (2017), pp. 1654-1662. |
| [153] | Y. Xue, J. Yuan, J. Liu, S. Li, Nanomaterials, 8 (2018), p. 591. |
| [154] | X.W. Zhang, M.L. Gao, J.H. Meng, J. Inorg. Mater., 34 (2019), pp. 1245-1256 |
| [155] | Y.Y. Li, G. Wang, X.G. Zhu, M.H. Liu, C. Ye, X. Chen, Y.Y. Wang, K. He, L.L. Wang, X.C. Ma, H.J. Zhang, X. Dai, Z. Fang, X.C. Xie, Y. Liu, X.L. Qi, J.F. Jia, S.C. Zhang, Q.K. Xue, Adv. Mater., 22 (2010), pp. 4002-4007. |
| [156] | C. Li, F. Kong, C. Liu, H. Liu, Y. Hu, T. Wang, J. Xu, F. Jiang, Nanotechnology, 28 (2017), Article 235604. |
| [157] | H. Lin, W. Qiu, J. Liu, L. Yu, S. Gao, H. Yao, Y. Chen, J. Shi, Adv. Mater., 31 (2019), Article 1903013. |
| [158] | Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A.M. Lindenberg, K. Xiao, B.J. LeRoy, M. Drndic, J.C.M. Hwang, J. Park, M. Chhowalla, R.E. Schaak, A. Javey, M.C. Hersam, J. Robinson, M. Terrones, 2D Mater., 3 (2016), Article 042001. |
| [159] | F. Rasch, F. Schuett, L.M. Saure, S. Kaps, J. Strobel, O. Polonskyi, A.S. Nia, M.R. Lohe, Y.K. Mishra, F. Faupel, L. Kienle, X. Feng, R. Adelung, ACS Appl. Mater. Interfaces, 11 (2019), pp. 44652-44663. |
| [160] | X. Cai, Y. Luo, B. Liu, H.M. Cheng, Chem. Soc. Rev., 47 (2018), pp. 6224-6266. |
| [161] | M. Qiu, W.X. Ren, T. Jeong, M. Won, G.Y. Park, D.K. Sang, L.P. Liu, H. Zhang, J.S. Kim, Chem. Soc. Rev., 47 (2018), pp. 5588-5601. |
| [162] | Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng, H.L. Luo, Y.Q. Cai, G.D. Liu, W.J. Zhao, Z. Zhou, L.M. Wu, Z.L. Zhu, M. Huang, L.W. Liu, L. Liu, P. Cheng, K.H. Wu, S.B. Tian, C.Z. Gu, Y.G. Shi, Y.F. Guo, Z.G. Cheng, J.P. Hu, L. Zhao, G.H. Yang, E. Sutter, P. Sutter, Y.L. Wang, W. Ji, X.J. Zhou, H.J. Gao, Nat. Commun., 11 (2020), p. 2453. |
| [163] | T.H. Le, Y. Oh, H. Kim, H. Yoon, Chem. A Eur. J., 26 (2020), pp. 6360-6401. |
| [164] | Y. Niu, J. Villalva, R. Frisenda, G. Sanchez-Santolino, L. Ruiz-Gonzalez, E.M. Perez, M. Garcia-Hernandez, E. Burzuri, A. Castellanos-Gomez, 2D Mater., 6 (2019), Article 035023. |
| [165] | J. Yang, X. Shen, C. Wang, Y. Chai, H. Yao, Extreme Mech. Lett., 29 (2019), Article 100473. |
| [166] | V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science, 340 (2013), Article 1226419. |
| [167] | F.I. Alzakia, W. Jonhson, J. Ding, S.C. Tan, ACS Appl. Mater. Interfaces, 12 (2020), pp. 28840-28851. |
| [168] | J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P.M. Ajayan, Nano Lett., 15 (2015), pp. 5449-5454. |
| [169] | Y. Yeon, M.Y. Lee, S.Y. Kim, J. Lee, B. Kim, B. Park, I. In, Nanotechnology, 26 (2015), Article 375602. |
| [170] | D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O'Regan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Nat. Commun., 6 (2015), p. 8563 |
| [171] | D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun, Sci. Rep., 5 (2015), p. 15899 |
| [172] | K. Wang, B.M. Szydlowska, G. Wang, X. Zhang, J.J. Wang, J.J. Magan, L. Zhang, J.N. Coleman, J. Wang, W.J. Blau, ACS Nano, 10 (2016), pp. 6923-6932. |
| [173] | S.B. Lu, L.L. Miao, Z.N. Guo, X. Qi, C.J. Zhao, H. Zhang, S.C. Wen, D.Y. Tang, D.Y. Fan, Opt. Express, 23 (2015), pp. 11183-11194. |
| [174] | L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol., 9 (2014), pp. 372-377. |
| [175] | X. Wang, A.M. Jones, K.L. Seyler, T. Vy, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Nat. Nanotechnol., 10 (2015), pp. 517-521. |
| [176] | X. Tang, L. Hu, T. Fan, L. Zhang, L. Zhu, H. Li, H. Liu, J. Liang, K. Wang, Z. Li, S. Ruan, Y. Zhang, D. Fan, W. Chen, Y.J. Zeng, H. Zhang, Adv. Funct. Mater., 29 (2019), Article 1808746. |
| [177] | J.W. Wells, K. Handrup, J.F. Kallehauge, L. Gammelgaard, P. Boggild, M.B. Balslev, J.E. Hansen, P.R.E. Petersen, P. Hofmann, J. Appl. Phys., 104 (2008), Article 053717. |
| [178] | J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun., 5 (2014), p. 4475. |
| [179] | H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A.G. Curto, G. Ye, Y. Hikita, Z. Shen, S.C. Zhang, X. Chen, M. Brongersma, H.Y. Hwang, Y. Cui, Nat. Nanotechnol., 10 (2015), pp. 707-713. |
| [180] | M. Zeraati, S.M.V. Allaei, I.A. Sarsari, M. Pourfath, D. Donadio, Phys. Rev. B, 93 (2016), Article 085424. |
| [181] | W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, N. Mingo, Phys. Rev. B, 86 (2012), Article 195436. |
| [182] | S. Gao, C. Sun, X. Zhang, Nanophotonics, 9 (2020), pp. 1931-1940. |
| [183] | J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, W. Ji, Sci. Bull., 63 (2018), pp. 159-168. |
| [184] | W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang, Z.N. Huang, Y. Ge, L. Wu, Z. Dong, X. Dai, Y. Xiang, J. Li, X. Zhang, H. Zhang, Small, 15 (2019), Article 1900902. |
| [185] | Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, Nano Lett., 17 (2017), pp. 3965-3973. |
| [186] | S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Adv. Sci., 4 (6)(2017), Article 1600305. |
| [187] | J. Lv, M. Xu, S. Lin, X. Shao, X. Zhang, Y. Liu, Y. Wang, Z. Chen, Y. Ma, Nano Energy, 51 (2018), pp. 489-495. |
| [188] | Y. Sakai, A. Oshiyama, Physi. Rev. B, 91 (2015), Article 201405. |
| [189] | Y. Xi, J. Zhuang, W. Hao, Y. Du, Chemelectrochem, 6 (2019), pp. 2841-2851. |
| [190] | Y. Huang, S.N. Shirodkar, B.I. Yakobson, J. Am. Chem. Soc., 139 (2017), pp. 17181-17185. |
| [191] | F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nanotechnol., 9 (2014), pp. 780-793. |
| [192] | G. Konstantatos, E.H. Sargent, Nat. Nanotechnol., 5 (2010), pp. 391-400. |
| [193] | W. Eerenstein, N.D. Mathur, J.F. Scott, Nature, 442 (2006), pp. 759-765. |
| [194] | C. Xiao, F. Wang, S.A. Yang, Y. Lu, Y. Feng, S. Zhang, Adv. Funct. Mater., 28 (2018), Article 1707383. |
| [195] | Y. Wang, C. Xiao, M. Chen, C. Hu, J. Zou, C. Wu, J. Jiang, S.A. Yang, Y. Lu, W. Ji, Mater. Horiz., 5 (2018), pp. 521-528. |
| [196] | Z.T. Wang, Y.H. Zou, Y. Chen, M. Wu, C.J. Zhao, H. Zhang, S.C. Wen, Laser Phys. Lett., 10 (2013), Article 075102. |
| [197] | U. Keller, Nature, 424 (2003), pp. 831-838. |
| [198] | J. He, L. Tao, H. Zhang, B. Zhou, J. Li, Nanoscale, 11 (2019), pp. 2577-2593. |
| [199] | J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K.M. Abramski, Appl. Phys. Lett., 107 (2015), Article 051108. |
| [200] | D. Na, K. Park, K.H. Park, Y.W. Song, Nanotechnology, 28 (2017), Article 475207. |
| [201] | M. Wang, F. Zhang, Z. Wang, Z. Wu, X. Xu, Opt. Express, 26 (2018), pp. 4085-4095. |
| [202] | Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan, Opt. Express, 23 (2015), pp. 12823-12833. |
| [203] | Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, ACS Nano, 4 (2010), pp. 803-810. |
| [204] | J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Sci. Rep., 6 (2016), p. 30361 |
| [205] | X.M. Liu, H.R. Yang, Y.D. Cui, G.W. Chen, Y. Yang, X.Q. Wu, X.K. Yao, D.D. Han, X.X. Han, C. Zeng, J. Guo, W.L. Li, G. Cheng, L.M. Tong, Sci. Rep., 6 (2016), pp. 1-8. |
| [206] | G. Konstantatos, Nat. Commun., 9 (2018), p. 5266. |
| [207] | Z. Sun, H. Chang, ACS Nano, 8 (2014), pp. 4133-4156. |
| [208] | F. Gong, F. Wu, M. Long, F. Chen, M. Su, Z. Yang, J. Shi, Phys. Status Solidi Rapid Res. Lett., 12 (2018), Article 1800310. |
| [209] | M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, Y. Wu, Adv. Mater., 28 (2016), pp. 3481-3485. |
| [210] | Y. Yin, R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, D. Dai, Laser Photonics Rev., 13 (2019), Article 1900032. |
| [211] | X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, F. Xia, Nat. Commun., 8 (2017), p. 524. |
| [212] | Y. Chang, L. Chen, J. Wang, W. Tian, W. Zhai, B. Wei, J. Phys. Chem. C, 123 (2019), pp. 21244-21251. |
| [213] | X. Zhang, J. Jiang, A.A. Suleiman, B. Jin, X. Hu, X. Zhou, T. Zhai, Adv. Funct. Mater., 29 (2019), Article 1906585. |
| [214] | N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, S.X. Dou, Y. Du, Small, 16 (2020), Article 2000283. |
| [215] | Z. Wu, G. Tai, R. Liu, C. Hou, W. Shao, X. Liang, Z. Wu, ACS Appl. Mater. Interfaces, 13 (2021), pp. 31808-31815. |
| [216] | M.A. Kharadi, G.F.A. Malik, F.A. Khanday, K.A. Shah, IEEE Trans. Electron. Devices, 68 (2021), pp. 138-143. |
| [217] | Z. Dang, W. Wang, J. Chen, E.S. Walker, S.R. Bank, D. Akinwande, Z. Ni, L. Tao, 2D Mater., 8 (2021), Article 035002. |
| [218] | Q. Xiao, C.X. Hu, H.R. Wu, Y.Y. Ren, X.Y. Li, Q.Q. Yang, G.H. Dun, Z.P. Huang, Y. Peng, F. Yan, Q. Wang, H.L. Zhang, Nanoscale Horiz., 5 (2020), pp. 124-130. |
| [219] | H. Fang, W. Hu, Adv. Sci., 4 (12)(2017), Article 1700323. |
| [220] | X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, D. Fan, J. Lightwave Technol., 34 (2016), pp. 4948-4953. |
| [221] | Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, H. Zhang, Laser Photonics Rev., 12 (2018), Article 1800016. |
| [222] | Z. Cheng, R. Cao, J. Guo, Y. Yao, K. Wei, S. Gao, Y. Wang, J. Dong, H. Zhang, Nanophotonics, 9 (2020), pp. 1973-1979. |
| [223] | L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma, Y. Xiang, J. Li, J.S. Ponraj, S.C. Dhanabalan, H. Zhang, Adv. Funct. Mater., 29 (2019), Article 1806346. |
| [224] | S. Das, D. Pandey, J. Thomas, T. Roy, Adv. Mater., 31 (2019), Article 1802722. |
| [225] | G. Chen, J. Seo, C. Yang, P.N. Prasad, Chem. Soc. Rev., 42 (2013), pp. 8304-8338. |
| [226] | X. Tong, F. Lin, J. Wu, Z.M. Wang, Adv. Sci., 3 (5)(2016), Article 1500201. |
| [227] | T. Chen, W. Hu, J. Song, G.H. Guai, C.M. Li, Adv. Funct. Mater., 22 (2012), pp. 5245-5250. |
| [228] | N. Suvansinpan, F. Hussain, G. Zhang, C.H. Chiu, Y. Cai, Y.W. Zhang, Nanotechnology, 27 (2016), Article 065708. |
| [229] | C. Sun, L. Wen, J. Zeng, Y. Wang, Q. Sun, L. Deng, C. Zhao, Z. Li, Biomaterials, 91 (2016), pp. 81-89. |
| [230] | A. Fujishima, K. Honda, Nature, 238 (1972), pp. 37-38. |
| [231] | M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Angew. Chem. Int. Ed., 57 (2018), pp. 2160-2164. |
| [232] | Y. Zheng, Y. Chen, B. Gao, B. Lin, J. Inorg. Mater., 35 (2020), pp. 647-653. |
| [233] | F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, M. Mavrikakis, W. Xu, Nat. Commun., 11 (2020), p. 1088. |
| [234] | J. Ran, B. Zhu, S.Z. Qiao, Angew. Chem. Int. Ed., 56 (2017), pp. 10373-10377. |
| [235] | D. Wang, A. Yang, T. Lan, C. Fan, J. Pan, Z. Liu, J. Chu, H. Yuan, X. Wang, M. Rong, N. Koratkar, J. Mater. Chem. A, 7 (2019), pp. 26326-26333. |
| [1] | Ling Tong, Xiaojiao Guo, Zhangfeng Shen, Lihui Zhou, Jingyi Ma, Xinyu Chen, Honglei Chen, Yin Xia, Chuming Sheng, Saifei Gou, Die Wang, Xinyu Wang, Xiangqi Dong, Yuxuan Zhu, Xinzhi Zhang, David Wei Zhang, Sheng Dai, Xi Li, Peng Zhou, Yangang Wang, Wenzhong Bao. Contact optimisation strategy for wafer-scale field-effect transistors based on two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2023, 133(0): 230-237. |
| [2] | Yaqin Wang, Wu Tang, Lan Zhang. Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films [J]. J. Mater. Sci. Technol., 2015, 31(2): 175-181. |
| [3] | Jingwei CHEN, Yue SHEN, Jiancheng ZHANG, Feng GU, Jinzhuan ZHU, Yiben XIA. Photoelectric Properties of Soluble ZnPc-Epoxy Derivative Doped with C60 [J]. J Mater Sci Technol, 2006, 22(04): 549-551. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
