J. Mater. Sci. Technol. ›› 2022, Vol. 126: 60-70.DOI: 0.1016/j.jmst.2022.04.003
Special Issue: Steel materials 2022
• Research Article • Previous Articles Next Articles
Bin Hua,1, Xiao Shenb,1, Qinyi Guoa, Qinghua Wena, Xin Tua, Cancan Dinga, Fanglin Dinga, Wenwen Songb,*(
), Haiwen Luoa,*(
)
Published:2022-11-01
Online:2022-11-10
Contact:
Wenwen Song,Haiwen Luo
About author:luohaiwen@ustb.edu.cn (H. Luo).Bin Hu, Xiao Shen, Qinyi Guo, Qinghua Wen, Xin Tu, Cancan Ding, Fanglin Ding, Wenwen Song, Haiwen Luo. Yielding behavior of triplex medium Mn steel alternated with cooling strategies altering martensite/ferrite interfacial feature[J]. J. Mater. Sci. Technol., 2022, 126: 60-70.
| Empty Cell | Fe | C | Mn | Al | N |
|---|---|---|---|---|---|
| wt.% | Bal. | 0.11 | 4.89 | 1.96 | 0.0018 |
| at.% | Bal. | 0.50 | 4.85 | 3.96 | 0.007 |
Table 1. Chemical composition of investigated MMS.
| Empty Cell | Fe | C | Mn | Al | N |
|---|---|---|---|---|---|
| wt.% | Bal. | 0.11 | 4.89 | 1.96 | 0.0018 |
| at.% | Bal. | 0.50 | 4.85 | 3.96 | 0.007 |
| Specimens | Grains | Ms ( °C) | Alloy elements (wt.%) | |||
|---|---|---|---|---|---|---|
| Mn | Al | C | Fe | |||
| 725AC | γ1 | −172.9 | 13.4 | 1.2 | 0.66 | 84.1 |
| α'1 | 52.3 | 9.64 | 1.56 | 0.55 | 87.53 | |
| γ2 | −306.6 | 15.52 | 1.37 | 0.81 | 81.53 | |
| α'2 | 109.7 | 9.41 | 1.74 | 0.38 | 88.06 | |
| α1 | / | 3.20 | 2.32 | 0.04 | 94.42 | |
| 725WQ | α1 | / | 2.87 | 2.48 | 0.01 | 94.11 |
| α'1 | 134.1 | 9.38 | 1.70 | 0.28 | 87.66 | |
| 750AC | α1 | / | 3.49 | 1.00 | 0.009 | 95.39 |
| α'1 | 163.5 | 7.37 | 0.54 | 0.318 | 91.59 | |
| 750WQ | α1 | / | 2.84 | 2.70 | 0.01 | 94.34 |
| α2 | / | 3.37 | 0.89 | 0.001 | 95.64 | |
| α'1 | 192.1 | 7.27 | 0.41 | 0.24 | 90.95 | |
Table 2. Chemical compositions (in wt.%, converted from at.% data measured by 3D-APT) of different phases (α, α' and γ represent ferrite, martensite and austenite) in 725AC, 725WQ, 750AC and 750WQ, the corresponding Ms temperatures are calculated using Eq. (1).
| Specimens | Grains | Ms ( °C) | Alloy elements (wt.%) | |||
|---|---|---|---|---|---|---|
| Mn | Al | C | Fe | |||
| 725AC | γ1 | −172.9 | 13.4 | 1.2 | 0.66 | 84.1 |
| α'1 | 52.3 | 9.64 | 1.56 | 0.55 | 87.53 | |
| γ2 | −306.6 | 15.52 | 1.37 | 0.81 | 81.53 | |
| α'2 | 109.7 | 9.41 | 1.74 | 0.38 | 88.06 | |
| α1 | / | 3.20 | 2.32 | 0.04 | 94.42 | |
| 725WQ | α1 | / | 2.87 | 2.48 | 0.01 | 94.11 |
| α'1 | 134.1 | 9.38 | 1.70 | 0.28 | 87.66 | |
| 750AC | α1 | / | 3.49 | 1.00 | 0.009 | 95.39 |
| α'1 | 163.5 | 7.37 | 0.54 | 0.318 | 91.59 | |
| 750WQ | α1 | / | 2.84 | 2.70 | 0.01 | 94.34 |
| α2 | / | 3.37 | 0.89 | 0.001 | 95.64 | |
| α'1 | 192.1 | 7.27 | 0.41 | 0.24 | 90.95 | |
Fig. 2. (a, b) Engineering stress-strain curves, in which, (b) is the magnification view of the rectangle area in (a); (c) the HEXRD patterns and (d) volume percentage of retained austenite.
Fig. 3. EBSD band contrast map overlapped by phase distribution images and Kernel Average Misorientation (KAM) maps of BCC and FCC phases showing the microstructure of 725AC (a, a1, a2), 725WQ (b, b1, b2), 750AC (c, c1, c2), 750WQ (d, d1, d2). The grains marked by green in band contrast images represent austenite. The local misorientation of KAM maps is expressed in the rainbow-scale colors.
Fig. 4. (a) TEM bright field image showing the microstructure of 750AC; (b) the selected area electron diffraction (SAED) pattern measured from the white circle in (a).
Fig. 5. Atom probe tomography measurement of 725AC specimen as an example of nanostructure characterization and phase identification: (a) triplex nano-grained phases (α'+α+γ) decorated by different Mn isoconcentration (at.%) surface; (b) 2D contour map of Mn density distribution.
Fig. 6. (a, d) Three-dimensional atom probe tomography maps of manganese in the 725AC (a) and 725WQ (d) specimens; (b, c, e) C/Mn/Al concentration profiles relative to the position of the phase boundaries taken from the selected region of interest (ROI) marked in (a) and (d).
Fig. 7. (a, c) Three-dimensional atom probe tomography maps of manganese in 750AC (a) and 750WQ (c) specimens; (b, d, e) C/Mn/Al concentration profiles relative to the position of the phase and grain boundaries taken from the selected region of interest (ROI) marked in (a) and (c).
Fig. 8. (a) Dilatometric curves of studied steel cooling to ambient temperature by different cooling rates (5 ℃/s, 10 ℃/s, 20 ℃/s, 50 ℃/s, 100 ℃/s) after they are IA at 750 for 10 min; (b, c) EBSD band contrast overlapped by phase distribution images showing the microstructure of dilatometric specimens that were cooling to ambient temperature at the cooling rates of 5 ℃/s (b) and 100 ℃/s (c). The grains marked by green in (b) and (c) represent austenite.
Fig. 9. C (a, c) and Mn (b, d) concentration gradients developed between the ferrite and austenite phases during IA at 725 ℃ (a, b) and 750 ℃ (c, d) for 10 min, and then cooling to 700 ℃, 650 ℃, 550 ℃, 500 ℃ and 450 ℃ at a cooling rate of 20 ℃/s.
| [1] | Y.K. Lee, J. Han, Mater. Sci. Tech., 31 (2015), pp. 843-856. |
| [2] | S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater., 64 (2011), pp. 649-652. |
| [3] | J.T. Benzing, Y. Liu, X. Zhang, W.E. Luecke, D. Ponge, A. Dutta, C. Oskay, D. Raabe, J.E. Wittig, Acta Mater, 177 (2019), pp. 250-265. |
| [4] | B.B. He, H.W. Luo, M.X. Huang, Int. J. Plast., 78 (2016), pp. 173-186. |
| [5] | X.G. Wang, C.H. Liu, B.B. He, Mater.Sci. Eng. A, 761 (2019), Article 138050. |
| [6] | X.G. Wang, L. Wang, M.X. Huang, Acta Mater, 124 (2017), pp. 17-29. |
| [7] | H. Luo, H. Dong, M. Huang, Mater. Des., 83 (2015), pp. 42-48. |
| [8] | J.H. Nam, S.K. Oh, H.M. Park, Y.K. Lee, Acta Mater, 206 (2021), Article 116613. |
| [9] | B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, D. Raabe, Acta Mater, 178 (2019), pp. 10-25. |
| [10] | Y. Ma, B. Sun, A. Schökel, W. Song, D. Ponge, D. Raabe, W. Bleck, Acta Mater, 200 (2020), pp. 389-403. |
| [11] | H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H. K.D.H. Bhadeshia, D.W. Suh, Scr. Mater., 68 (2013), pp. 933-936. |
| [12] | J. Ma, Q. Lu, L. Sun, Y. Shen, Metall. Mater. Trans. A, 49 (2018), pp. 4404-4408. |
| [13] | Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Mater.Sci. Eng. A, 679 (2017), pp. 230-239. |
| [14] | S. Gao, Y. Bai, R. Zheng, Y. Tian, W. Mao, A. Shibata, N. Tsuji, Scr. Mater., 159 (2019), pp. 28-32. |
| [15] | X.G. Wang, L. Wang, M.X. Huang, Mater.Sci. Eng. A, 674 (2016), pp. 59-63. |
| [16] | B. Hu, F. Ding, X. Tu, Q. Guo, C. Ding, Y. Wang, H. Luo, Materialia, 20 (2021), Article 101252. |
| [17] | T. Gnäupel-Herold, A. Creuziger, Mater.Sci. Eng. A, 528 (2011), pp. 3594-3600. |
| [18] | N. Gey, B.P. Student, M. Humbert, Metall. Mater. Trans. A, 36 (12) (2005), pp. 3291-3299. |
| [19] | H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater, 62 (2014), pp. 197-211. |
| [20] | J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Acta Mater, 59 (2011), pp. 4387-4394. |
| [21] | C.H. Wu, L.F. Liu, Z.H. Cai, L.W. Lu, Z.Q. Wu, J. Netshape Forming Eng., 13 (2021), pp. 89-96. |
| [22] | B. Hu, H. Luo, Acta Mater, 176 (2019), pp. 250-263. |
| [23] | B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Crystallography, Mater. Today, 15 (9) (2012), pp. 378-386. |
| [24] | S. Kang, E. De Moor, J.G. Speer, Metall. Mater. Trans. A, 46 (2015), pp. 1005-1011. |
| [25] | K. Steineder, R. Schneider, D. Krizan, C. Beal, C. Sommitsch, Steel Res. Int., 86 (2015), pp. 1179-1186. |
| [26] | M. Gomez, C.I. Garcia, A.J. Deardo, ISIJ Int, 50 (2010), pp. 139-146. |
| [27] | M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A, 40 (2009), pp. 46-57. |
| [28] | Q. Han, Y. Kang, X. Zhao, N. Stanford, M. Cai, Mater. Des., 51 (2013), pp. 409-414. |
| [29] | B. Hu, B.B. He, G.J. Cheng, H.W. Yen, X.M. Huang, H.W. Luo, Acta Mater, 174 (2019), pp. 131-141. |
| [30] | S. Araki, K. Mashima, T. Masumura, T. Tsuchiyama, S. Takaki, T. Ohmura, Scr. Mater., 169 (2019), pp. 38-41. |
| [31] | D. Akama, N. Nakada, T. Tsuchiyama, S. Takaki, A. Hironaka, Scr. Mater., 82 (2014), pp. 13-16. |
| [32] | M.S. Mohsenzadeh, M. Mazinani, Mater.Sci. Eng. A, 673 (2016), pp. 193-203. |
| [33] | H. Luo, J. Shi, C. Wang, Q.W. Cao, J.X. Sun, H. Dong, Acta Mater, 59 (2011), pp. 4002-4014. |
| [34] | B. Hu, H. Luo, J. Alloys Compd., 725 (2017), pp. 684-693. |
| [35] | X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater, 154 (2018), pp. 1-13. |
| [36] | Q.Y. Guo, H.W. Yen, H.W. Luo, S.P. Ringer, Acta Mater, 225 (2022), Article 117601. |
| [37] | C. Song, H. Yu, L. Li, J. Lu, Mater. Lett., 174 (2016), pp. 75-78. |
| [38] | O. Thuillier, F. Danoix, M. Gouné, D. Blavette, Scr. Mater., 55 (2006), pp. 1071-1074. |
| [39] | J.H. Park, J.K. Kim, B.H. Lee, S.S. Kim, K.Y. Kim, Scr. Mater., 68 (2013), pp. 237-240. |
| [1] | Wenbin Guo, Fuzhou Han, Geping Li, Yingdong Zhang, Muhammad Ali, Jie Ren, Qichen Wang, Fusen Yuan. Atomic scale investigation of FCC → HCP reverse phase transformation in face-centered cubic zirconium [J]. J. Mater. Sci. Technol., 2023, 137(0): 8-13. |
| [2] | Meng Li, Zhang-Zhi Shi, Qiang Wang, Yang Cheng, Lu-Ning Wang. Zn-0.8Mn alloy for degradable structural applications: Hot compression behaviors, four dynamic recrystallization mechanisms, and better elevated-temperature strength [J]. J. Mater. Sci. Technol., 2023, 137(0): 159-175. |
| [3] | Chanwoo Park, Edmund Samuel, Byeong-Yeop Kim, Seongpil An, Hae-Seok Lee, Sam S. Yoon. Supersonically sprayed self-aligned rGO nanosheets and ZnO/ZnMn2O4 nanowires for high-energy and high-power-density supercapacitors [J]. J. Mater. Sci. Technol., 2023, 137(0): 193-204. |
| [4] | Huxiang Xia, Yanhong Yang, Qiushui Feng, Qingyan Xu, Hongbiao Dong, Baicheng Liu. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy [J]. J. Mater. Sci. Technol., 2023, 137(0): 232-246. |
| [5] | Wenbin Liu, Ting Zheng, Xuezheng Ruan, Zhenyong Man, Haoyue Xue, Laiming Jiang, Fuping Zhang, Guorong Li, Jiagang Wu. Synergy of lead vacancies and morphotropic phase boundary to promote high piezoelectricity and temperature stability of PBZTN ceramics [J]. J. Mater. Sci. Technol., 2023, 137(0): 1-7. |
| [6] | Yixiao Yang, Enwei Sun, Zhimin Xu, Huashan Zheng, Bin Yang, Rui Zhang, Wenwu Cao. Sm and Mn co-doped PMN-PT piezoelectric ceramics: Defect engineering strategy to achieve large d33 and high Qm [J]. J. Mater. Sci. Technol., 2023, 137(0): 143-151. |
| [7] | Guangqi He, Yi Zhang, Pei Yao, Xingchao Li, Ke Ma, Jun Zuo, Meishuan Li, Changsheng Liu, Jingjun Xu. A novel medium-entropy (TiVNb)2AlC MAX phase: Fabrication, microstructure, and properties [J]. J. Mater. Sci. Technol., 2023, 137(0): 91-99. |
| [8] | Linjing Qiao, Jianqiang Bi, Guandong Liang, Chen Liu, Zhuangzhuang Yin, Yao Yang, Hongyi Wang, Shaoyin Wang, Mengmeng Shang, Weili Wang. Synthesis and electromagnetic wave absorption performances of a novel (Mo0.25Cr0.25Ti0.25V0.25)3AlC2 high-entropy MAX phase [J]. J. Mater. Sci. Technol., 2023, 137(0): 112-122. |
| [9] | F.H. Duan, Y. Lin, Q. Li, J.H. Luan, J. Lu, J. Pan, Y. Li. Hardness-thermal stability synergy in nanograined Ni and Ni alloys: Superposition of nanotwin and low-energy columnar boundary [J]. J. Mater. Sci. Technol., 2023, 137(0): 123-131. |
| [10] | Pan Wu, Yubing Zhang, Jiaqi Hu, Shaojie Song, Yong Li, Huiyuan Wang, Guo Yuan, Zhaodong Wang, Shizhong Wei, Feng Liu. Generalized stability criterion for controlling solidification segregation upon twin-roll casting [J]. J. Mater. Sci. Technol., 2023, 134(0): 163-177. |
| [11] | Wanting Sun, Jiasi Luo, Yim Ying Chan, J.H. Luan, Xu-Sheng Yang. An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing [J]. J. Mater. Sci. Technol., 2023, 134(0): 209-222. |
| [12] | Panpan Zhao, Markus Gusenbauer, Harald Oezelt, Daniel Wolf, Thomas Gemming, Thomas Schrefl, Kornelius Nielsch, Thomas George Woodcock. Nanoscale chemical segregation to twin interfaces in τ-MnAl-C and resulting effects on the magnetic properties [J]. J. Mater. Sci. Technol., 2023, 134(0): 22-32. |
| [13] | Tianwei Liu, Lunwei Liang, Dierk Raabe, Lanhong Dai. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134(0): 244-253. |
| [14] | Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao. Thermodynamics for the non-conventional synthesizing of out-of-plane ordered double-transition metal “312” and “413” MAX phases (o-MAX): A high throughput linear programing first-principles calculation [J]. J. Mater. Sci. Technol., 2023, 134(0): 81-88. |
| [15] | Jiawei Zou, Xiaoqian Fu, Yajing Song, Tianxin Li, Yiping Lu, Ze Zhang, Qian Yu. High strength and deformation stability achieved in CrCoNi alloy containing deformable oxides [J]. J. Mater. Sci. Technol., 2023, 134(0): 89-94. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
