J. Mater. Sci. Technol. ›› 2022, Vol. 131: 100-105.DOI: 10.1016/j.jmst.2022.05.032
• Research Article • Previous Articles Next Articles
Yonggang Fana,b,c, Kenan Lib, Haodong Lia, Cong Wanga,*()
Received:
2022-04-16
Revised:
2022-05-14
Accepted:
2022-05-23
Published:
2022-06-11
Online:
2022-06-11
Contact:
Cong Wang
About author:
*E-mail address: wangc@smm.neu.edu.cn (C. Wang)Yonggang Fan, Kenan Li, Haodong Li, Cong Wang. Profiling interfacial reaction features between diamond and Cu-Sn-Ti active filler metal brazed at 1223 K[J]. J. Mater. Sci. Technol., 2022, 131: 100-105.
Fig. 1. Typical wetting morphologies of diamond particles brazed by Cu-Sn-Ti filler metal with different TiH2 contents at 1223 K for 30 min. (a) Virgin diamond particles, (b) 1 wt%, (c) 3 wt%, (d) 5 wt%, (e) 7 wt%, and (f) 9 wt%. Red dashed lines areas show completely uncoated diamond particles, yellow dashed lines show partially coated diamond particles, and green dashed lines represent completely coated ones.
Fig. 3. Typical interfacial microstructures and EDS elemental mapping images of diamond/Cu-Sn-Ti composites with different TiH2 contents (1223 k, t = 30 min). (a) 1 wt%, (b) magnified region from (a), (c) elemental mappings of the magnified region by yellow square in (b); (d) 3 wt%, (e) magnified image of (d), (f) elemental mappings of the magnified region by yellow square in (e); (g) 5 wt%, (h) magnified image of (g), (i) elemental mappings of the magnified region by yellow square in (h); (j) 7 wt%, (k) magnified image of (j), (l) elemental mappings of the magnified region by yellow square in (k); (m) 9 wt%, (n) magnified image of (m), (o) elemental mappings of the magnified region by yellow square in (n); Green, blue, cyan and red squares represent areas where Cu, Sn, C and Ti exists, respectively. The average thickness of reaction layer was determined by EDS at the interface using the technique demonstrated by the present authors elsewhere [19].
Fig. 6. Typical morphologies of the specimens after wear test of diamond/Cu-Sn-Ti composites treated with different TiH2 contents: (a) 1 wt%, (b) 3 wt%, (c) 5 wt%, (d) 7 wt%, and (e) 9 wt%. Red, green and blue dashed lines circle areas represent pull out, wear and crush of diamond particles, respectively. Yellow dashed lines are cracks in the metal matrix.
[1] |
W. Zhang, Y. Zhong, C. Wang, J. Mater. Sci. Technol. 28 (2012) 661-665.
DOI URL |
[2] |
S. Liu, L. Han, Y. Zou, P. Zhu, B. Liu, J. Mater. Sci. Technol. 33 (2017) 1386-1391.
DOI URL |
[3] |
W.C. Li, C. Liang, S.T. Lin, Diam Relat. Mater. 11 (2002) 1366-1373.
DOI URL |
[4] |
T.W. Hwang, C.J. Evans, E.P. Whitenton, S. Malkin, J. Manuf. Sci. Eng. 122 (2000) 42-50.
DOI URL |
[5] |
M.W. Cook, P.K. Bossom, Int. J. Refract. Met. Hard Mater. 18 (2000) 147-152.
DOI URL |
[6] | J. Tamaki, A. Kubo, J.W. Yan, K. Narita, Key Eng. Mater. 238 (2003) 327-332. |
[7] | J. Zhang, J.Y. Liu, T.P. Wang, J. Mater. Sci. Technol. 34 (2017) 139-145. |
[8] |
B. Chen, W.J. Zou, W.W. Li, S.B. Wu, H.P. Xiong, X. Wu, J. Mater. Sci. Technol. 50 (2020) 13-20.
DOI |
[9] | Y.T. Yan, J.H. Lin, T. Liu, B.S. Liu, B. Wang, L. Qiao, J.C. Tu, J. Cao, J.L. Qi, Corros. Sci. 200 (2022) 110231. |
[10] | Y.T. Yan, T. Liu, J.H. Lin, L. Qiao, B.S. Liu, J.C. Tu, J. Cao, J.L. Qi, J. Alloy. Compd. 883 (2021) 160933. |
[11] |
Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang, J.C. Feng, J. Mater. Sci. Technol. 33 (2017) 1392-1401.
DOI |
[12] |
Y. Wang, K. Lei, Y. Ruan, W. Dong, Int. J. Refract. Met. Hard Mater. 54 (2016) 98-103.
DOI URL |
[13] |
W.F. Ding, J.H. Xu, Z.Z. Chen, Q. Miao, C.Y. Yang, Mater. Sci. Eng. A 559 (2013) 629-634.
DOI URL |
[14] |
Y.G. Fan, J.X. Fan, C. Wang, J. Mater. Sci. Technol. 68 (2020) 35-39.
DOI URL |
[15] |
Q.Y. Zhai, Y. Yang, J.F. Xu, X.F. Guo, Chin. J. Nonferrous. Met. 16 (2006) 1374-1379.
DOI URL |
[16] |
S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang, H. Wu, Surf. Coat. Technol. 286 (2016) 376-382.
DOI URL |
[17] |
Y. Wang, X.M. Qiu, D.Q. Sun, S.Q. Yin, Int. J. Refract. Met. Hard Mater. 29 (2011) 293-297.
DOI URL |
[18] |
W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, B. Xiao, Int. J. Refract. Met. Hard Mater. 24 (2006) 432-436.
DOI URL |
[19] |
Y.G. Fan, J.X. Fan, C. Wang, J. Mater. Sci. Technol. 35 (2019) 2163-2168.
DOI URL |
[20] |
Y.C. Hsieh, S.T. Lin, J. Alloy. Compd. 466 (2008) 126-132.
DOI URL |
[21] |
Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy, N.Y. Taranets, J. Eur. Ceram. Soc. 28 (2008) 717-728.
DOI URL |
[22] |
C. Leinenbach, R. Transchel, K. Gorgievski, F. Kuster, H.R. Elsener, K. Wegener, J. Mater. Eng. Perform. 24 (2015) 2042-2050.
DOI URL |
[23] |
S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert, Mater. Lett. 156 (2015) 202-204.
DOI URL |
[24] |
H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, G.S. Zou, L. Liu, Mater. Charact. 144 (2018) 469-478.
DOI URL |
[25] | G. Yang, X. Li, X. Han, H. Zhang, L. Wen, S. Li, Microelectron. Reliab. 130 (2022) 114481. |
[26] |
J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, Calphad. 35 (2011) 82-94.
DOI URL |
[27] |
W. Zhai, W.L. Wang, D.L. Geng, B. Wei, Acta Mater. 60 (2012) 6518-6527.
DOI URL |
[28] |
F. Kohler, T. Campanella, S. Nakanishi, M. Rappaz, Acta Mater. 56 (2008) 1519-1528.
DOI URL |
[29] | H. Zhang, X. Li, P. Yao, L. Wen, Y. Zhu, X. He, G. Yang, Mater. Charact. 186 (2022) 111791. |
[30] |
X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Acta Mater. 52 (2004) 4291-4303.
DOI URL |
[31] | P. Zhu, P. Wang, P. Shao, X. Lin, Z. Xiu, Q. Zhang, E. Kobayashi, G. Wu, J. Min. Met. Mater. 29 (2022) 200-211. |
[32] | S. Dai, J. Li, N. Lu, Diam Relat. Mater. 108 (2020) 107993. |
[33] |
R.M. Nascimento, A.E. Martinelli, A.J.A. Buschinelli, Cerâmica 49 (2003) 178-198.
DOI URL |
[34] |
P.C. Wang, Z.Q. Xu, X.F. Liu, H.H. Wang, B. Qin, J.H. Lin, J. Cao, J.L. Qi, J.C. Feng, Carbon 191 (2022) 290-300.
DOI URL |
[35] |
L.Y. Xu, X. Chen, H.Y. Jing, L.X. Wang, J. Wei, T.D. Han, Mater. Sci. Eng. A 667 (2016) 87-96.
DOI URL |
[36] |
F.A. Khalid, U.E. Klotz, H.R. Elsener, B. Zigerlig, P. Gasser, Scr. Mater. 50 (2004) 1139-1143.
DOI URL |
[37] |
W.C. Li, S.T. Lin, C. Liang, Metall. Mater. Trans. A 33 (2002) 2163-2172.
DOI URL |
[38] |
Y. Choi, S.W. Rhee, J. Mater. Sci. 30 (1995) 4637-4644.
DOI URL |
[39] |
D.Z. Duan, B. Xiao, B. Wang, P. Han, W.J. Li, S.W. Xia, Int. J. Refract. Met. Hard Mater. 48 (2015) 427-432.
DOI URL |
[40] |
U.E. Klotz, C. Liu, F.A. Khalid, H.R. Elsener, Mater. Sci. Eng. A 495 (2008) 265-270.
DOI URL |
[41] |
S.F. Huang, H.L. Tsai, S.T. Lin, Mater. Chem. Phys. 84 (2004) 251-258.
DOI URL |
[42] |
Q.L. Li, H.Z. Ren, W.N. Lei, K. Ding, L. Ding, S.R. Zhang, Int. J. Adv. Manuf. Tech. 95 (2017) 2111-2118.
DOI URL |
[43] |
S.X. Liu, B. Xiao, Z.Y. Zhang, D.Z. Duan, Int. J. Refract. Met. Hard Mater. 54 (2016) 54-59.
DOI URL |
[44] |
X. Liu, S. He, H. Nishikawa, Scr. Mater. 110 (2016) 101-104.
DOI URL |
[45] |
A. Korneva, B. Straumal, A. Kilmametov, L. Lityńska-Dobrzyńska, G. Cios, P. Bała, P. Zięba, Mater. Charact. 118 (2016) 411-416.
DOI URL |
[46] |
C.Y. Ma, W.F. Ding, J.H. Xu, Y.C. Fu, Mater. Des. 65 (2015) 50-56.
DOI URL |
[47] |
B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, Z. Chen, Mater. Sci. Eng. A 730 (2018) 345-354.
DOI URL |
[1] | Haohan Wang, Jinghuang Lin, Junlei Qi, Jian Cao. Joining SiO2 based ceramics: recent progress and perspectives [J]. J. Mater. Sci. Technol., 2022, 108(0): 110-124. |
[2] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
[3] | Zhigang Lu, Nan Huang, Zhaofeng Zhai, Bin Chen, Lusheng Liu, Haozhe Song, Ziyao Yuan, Chuyan Zhang, Bing Yang, Xin Jiang. Integration of 3D interconnected porous microstructure and high electrochemical property for boron-doped diamond by facile strategy [J]. J. Mater. Sci. Technol., 2022, 105(0): 26-35. |
[4] | Zhongyou Que, Zichen Wei, Xingyu Li, Lin Zhang, Yanhao Dong, Mingli Qin, Junjun Yang, Xuanhui Qu, Ju Li. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126(0): 203-214. |
[5] | Qinyang Zhao, Leandro Bolzoni, Yongnan Chen, Yiku Xu, Rob Torrens, Fei Yang. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms [J]. J. Mater. Sci. Technol., 2022, 126(0): 22-43. |
[6] | Guangpeng Sun, Xing Feng, Xue Wu, Sitong Zhang, Bin Wen. Is hardness constant in covalent materials? [J]. J. Mater. Sci. Technol., 2022, 114(0): 215-221. |
[7] | P. Wang, X. Liu, H. Wang, J. Cao, J. Qi, J. Feng. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti + Sc2(WO4)3 composite filler metal [J]. J. Mater. Sci. Technol., 2022, 108(0): 102-109. |
[8] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[9] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[10] | Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite [J]. J. Mater. Sci. Technol., 2021, 91(0): 1-4. |
[11] | Yonggang Fan, Cong Wang. Growth kinetics of interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 92(0): 69-74. |
[12] | Muhammad Imran Saleem, Shangyi Yang, Attia Batool, Muhammad Sulaman, Chandrasekar Perumal Veeramalai, Yurong Jiang, Yi Tang, Yanyan Cui, Libin Tang, Bingsuo Zou. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors [J]. J. Mater. Sci. Technol., 2021, 75(0): 196-204. |
[13] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
[14] | Dan Shi, Lusheng Liu, Zhaofeng Zhai, Bin Chen, Zhigang Lu, Chuyan Zhang, Ziyao Yuan, Meiqi Zhou, Bing Yang, Nan Huang, Xin Jiang. Effect of oxygen terminated surface of boron-doped diamond thin-film electrode on seawater salinity sensing [J]. J. Mater. Sci. Technol., 2021, 86(0): 1-10. |
[15] | Cheng Yang, Bingqiang Wei, Kejian He, Ping Xu, Xiangmin Xie, Kai Tong, Chen Zeng, Yafeng Wang, Xiaodong Wang, Jinping Liu, Mingyu Zhang, Zhe'an Su, Qizhong Huang. Simple and rapid conversion of silicon carbide to nanodiamonds at ambient pressure [J]. J. Mater. Sci. Technol., 2021, 94(0): 230-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||