J. Mater. Sci. Technol. ›› 2022, Vol. 131: 106-114.DOI: 10.1016/j.jmst.2022.05.025
• Research Article • Previous Articles Next Articles
Hao Lia,b, Qianru Guoa, Qiufen Tua, Kaiqin Xiong, Wei Wangd,*(), Lei Lue,f,*(
), Wentai Zhangb,g, Nan Huanga, Zhilu Yanga,b,g,*(
)
Received:
2022-03-13
Revised:
2022-04-25
Accepted:
2022-05-10
Published:
2022-06-09
Online:
2022-06-09
Contact:
Wei Wang,Lei Lu,Zhilu Yang
About author:
zhiluyang1029@swjtu.edu.cn, zhiluyang1029@smu.edu.cn (Z. Yang)1These authors contributed equally to this work.
Hao Li, Qianru Guo, Qiufen Tu, Kaiqin Xiong, Wei Wang, Lei Lu, Wentai Zhang, Nan Huang, Zhilu Yang. Nitric oxide-generating self-assembling peptide hydrogel coating for enhancing hemocompatibility of blood-contacting devices[J]. J. Mater. Sci. Technol., 2022, 131: 106-114.
Fig. 1. Construction of the hydrogel anticoagulant surface with the catalytic release of NO for regulation of the platelet aggregation and activation via NO-cGMP signaling pathway.
Fig. 2. Chemical structures of the self-assembling peptide (A-i) RADA and (A-ii) U. H NMR spectra of the self-assembling peptide (B-i) RADA and (B-ii) U. (C) Schematic of the hydrogel matrices with both RADA and U self-assembling peptides. (D-i) U&RADA peptide solution formed stable hydrogel after gelation. (D-ii) Congo red (CR) staining of the U&RADA hydrogel matrices. (D-iii) Circular dichroism (CD) spectroscopy of the peptide structure of the U&RADA hydrogel matrices.
Fig. 3. Characterization of U&RADA hydrogel coating. (A-i) Schematic of preparation of hydrogel coating. (A-ii) Photographs of the coating before and after coating. (A-iii) SEM images of U&RADA hydrogel coating. (B) GATR-FTIR spectrum of U&RADA hydrogel coating. (C) XPS wide-scan survey spectra of the U&RADA, RADA hydrogel coating and 316L SS substrate, and (D) high-resolution spectra of Se 3d in U&RADA and RADA hydrogel coatings. (E) Thickness of the hydrogel coatings. (F) Real-time release of NO catalyzed by the hydrogel coating. (G) NO catalytic release rates of different surfaces. Data presented as mean ± SD (n = 4) and analyzed by one-way ANOVA (***p < 0.001).
Fig. 4. In vitro anticoagulant and anti-complement system activation ability of the hydrogel coating. (A) cGMP expression of the platelets adhered to the coating. (B) SEM images of the adherent platelets and relative quantification of (C) the count of adherent platelets and (D) the ratio of activated platelets. (E) Hemolysis rate of the coating. (F) Concentration of F1 + 2, PF4, CRP and C5a in the whole blood incubated with the coating in vitro. “U&RADA (+/-)” represented the group treated with or without the supplement of NO donor. Data were presented as mean ± SD (n = 4) and analyzed by one-way ANOVA (* compared with 316L SS, # compared with RADA, & compared with U&RADA (-); *p < 0.05, **p < 0.01, ***p < 0.001).
Fig. 5. Ex vivo hemocompatibility evaluation for the hydrogel coating. (A) Schematic of the rabbit arteriovenous extracorporeal circuit model. (B) Cross-sectional photographs of thrombi forming on the catheter inserted with samples. Quantitative analysis of (C) occlusion rate and (D) blood flow rate of the catheter containing formed thrombi. (E) Photographs, (F) thrombus weight statistic and (G) SEM images of the thrombi on the surface of coated and uncoated substrates. Data were presented as mean ± SD (n = 4) and analyzed by one-way ANOVA (* compared with 316L SS, # compared with RADA, *p < 0.05, **p < 0.01, ***p < 0.001).
[1] |
B.D. Ratner, Biomaterials 28 (2007) 5144-5147.
PMID |
[2] |
I.H. Jaffer, J.I. Weitz, Acta Biomater. 94 (2019) 2-10.
DOI PMID |
[3] |
A. Strohbach, R. Busch, Int. J. Mol. Sci. 22 (2021) 11390.
DOI URL |
[4] | S. Wei, J.A. Li, H. He, C. Shu, A. Dardik, H. Bai, Smart Mater. Med. 3 (2022) 139-147. |
[5] | X. Meng, Y. Cheng, P. Wang, K. Chen, Z. Chen, X. Liu, X. Fu, K. Wang, K. Liu, Z. Liu, X. Duan, ACS Appl. Mater. Interfaces 13 (2021) 4 835-4 843. |
[6] | X. Chen, Y. Gao, Y. Wang, G. Pan, Smart Mater, Mater. Smart Med. 2 (2021) 26-37. |
[7] |
Y. Wang, J. Mater. Sci. Technol. 32 (2016) 801-809.
DOI URL |
[8] |
A. Gries, C. Bode, K. Peter, A. Herr, H. Böhrer, J. Motsch, E. Martin, Circulation 97 (1998) 1481-1487.
DOI PMID |
[9] |
M.M. Reynolds, J.A. Hrabie, B.K. Oh, J.K. Politis, M.L. Citro, L.K. Keefer, M.E. Mey-erhoff, Biomacromolecules 7 (2006) 987-994.
PMID |
[10] |
C.E. Lin, D.S. Garvey, D.R. Janero, L.G. Letts, P. Marek, S.K. Richardson, D. Sere-bryanik, M.J. Shumway, S.W. Tam, A.M. Trocha, D.V. Young, J. Med. Chem. 47 (2004) 2276-2282.
DOI URL |
[11] |
A. Balbatun, F.R. Louka, T. Malinski, Acta Biochim. Pol. 50 (2003) 61-68.
PMID |
[12] |
N. Naghavi, A. de Mel, O.S. Alavijeh, B.G. Cousins, A.M. Seifalian, Small 9 (2013) 22-35.
DOI PMID |
[13] |
H. Qiu, P. Qi, J. Liu, Y. Yang, X. Tan, Y. Xiao, M.F. Maitz, N. Huang, Z. Yang, Biomaterials 207 (2019) 10-22.
DOI PMID |
[14] | Y. Yang, P. Gao, J. Wang, Q. Tu, L. Bai, K. Xiong, H. Qiu, X. Zhao, M.F. Maitz, H. Wang, X. Li, Q. Zhao, Y. Xiao, N. Huang, Z. Yang, Research (2020) 9203906 2020. |
[15] | Q. Ma, X. Shi, X. Tan, R. Wang, K. Xiong, M.F. Maitz, Y. Cui, Z. Hu, Q. Tu, N. Huang, L. Shen, Z. Yang, Bioact. Mater. 6 (2021) 4786-4800. |
[16] | Y. Xiao, W. Wang, X. Tian, X. Tan, T. Yang, P. Gao, K. Xiong, Q. Tu, M. Wang, M.F. Maitz, N. Huang, G. Pan, Z. Yang, Research (2021) 9864698 2021. |
[17] |
S. Zhang, T.C. Holmes, C.M. DiPersio, R.O. Hynes, X. Su, A. Rich, Biomaterials 16 (1995) 1385-1393.
PMID |
[18] | T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, S. Zhang, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 6728-6733. |
[19] | S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 3334-3338. |
[20] |
S. Zhang, F. Gelain, X. Zhao, Semin. Cancer Biol. 15 (2005) 413-420.
DOI URL |
[21] |
A. Saini, K. Serrano, K. Koss, L.D. Unsworth, Acta Biomater. 31 (2016) 71-79.
DOI URL |
[22] | H. Yokoi, T. Kinoshita, S. Zhang, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 8414-8419. |
[23] |
S. Koutsopoulos, S. Zhang, J. Controlled Release 160 (2012) 451-458.
DOI URL |
[24] | V.A. Kumar, S. Shi, B.K. Wang, I.C. Li, A.A. Jalan, B. Sarkar, N.C. Wickremasinghe, J.D. Hartgerink, J. Am. Chem. Soc. 137 (2015) 4 823-4 830. |
[25] | L. Li, J. Li, J. Guo, H. Zhang, X. Zhang, C. Yin, L. Wang, Y. Zhu, Q. Yao, Adv. Funct. Mater. 29 (2019) 1807356. |
[26] |
S. Liu, M. Zhao, Y. Zhou, L. Li, C. Wang, Y. Yuan, L. Li, G. Liao, W. Bresette, Y. Chen, J. Cheng, Y. Lu, J. Liu, Acta Biomater. 103 (2020) 102-114.
DOI URL |
[27] |
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677-689.
DOI PMID |
[28] |
R. Pugliese, M. Maleki, R.N. Zuckermann, F. Gelain, Biomater. Sci. 7 (2018) 76-91.
DOI URL |
[29] |
M. Reches, E. Gazit, Nat. Nanotechnol. 1 (2006) 195-200.
DOI URL |
[30] |
F. Gelain, D. Bottai, A. Vescovi, S. Zhang, PLoS One 1 (2006) e119.
DOI URL |
[31] | C. Cunha, S. Panseri, O. Villa, D. Silva, F. Gelain, Int. J. Nanomed. 6 (2011) 943-955. |
[32] |
Y. Sun, W. Li, X. Wu, N. Zhang, Y. Zhang, S. Ouyang, X. Song, X. Fang, R. Seeram, W. Xue, L. He, W. Wu, ACS Appl. Mater. Interfaces 8 (2016) 2348-2359.
DOI URL |
[33] |
W. Cha, M.E. Meyerhoff, Biomaterials 28 (2007) 19-27.
DOI URL |
[34] | H. Gui, Y. Feng, L. Qiang, T. Sun, L. Liu, Smart Mater. Med. 2 (2021) 46-55. |
[35] |
F. Gelain, Z. Luo, S. Zhang, Chem. Rev. 120 (2020) 13434-13460.
DOI URL |
[36] |
Y. Wang, Y. Liu, X. Deng, Y. Cong, X. Jiang, Biosens. Bioelectron. 86 (2016) 211-218.
DOI URL |
[37] |
H. Cao, Y. Wang, Y. Gao, X. Deng, Y. Cong, Y. Liu, X. Jiang, Angew. Chem. Int. Ed. 58 (2019) 1626-1631.
DOI URL |
[38] | G.R. Wang, Y. Zhu, P.V. Halushka, T.M. Lincoln, M.E. Mendelsohn, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 4888-4893. |
[39] |
M.F. Maitz, U. Freudenberg, M.V. Tsurkan, M. Fischer, T. Beyrich, C. Werner, Nat. Commun. 4 (2013) 2168.
DOI URL |
[40] |
M.B. Gorbet, M.V. Sefton, Biomaterials 25 (2004) 5681-5703.
PMID |
[41] |
Q.F. Tu, X.H. Shen, Y.W. Liu, Q. Zhang, X. Zhao, M.F. Maitz, T. Liu, H. Qiu, J. Wang, N. Huang, Z.L. Yang, Mater. Chem. Front. 3 (2019) 265-275.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||