J. Mater. Sci. Technol. ›› 2022, Vol. 129: 206-214.DOI: 10.1016/j.jmst.2022.04.047
• Research Article • Previous Articles Next Articles
Juhua Luoa,*(), Ziyang Daia, Mengna Fenga, Xiaowen Chena, Caihong Suna, Ying Xub,*(
)
Received:
2022-03-17
Revised:
2022-04-19
Accepted:
2022-04-20
Published:
2022-05-30
Online:
2022-05-30
Contact:
Juhua Luo,Ying Xu
About author:
11120008@hyit.edu.cn (Y. Xu).Juhua Luo, Ziyang Dai, Mengna Feng, Xiaowen Chen, Caihong Sun, Ying Xu. Hierarchically porous carbon derived from natural Porphyra for excellent electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 129: 206-214.
Sample | SBET (m2 g-1) | Vpore (cm3 g-1) | Dpore (nm) |
---|---|---|---|
PPC-650 | 1145.42 | 0.58 | 2.00 |
PPC-700 | 1174.40 | 0.59 | 2.02 |
PPC-750 | 1330.59 | 0.71 | 2.11 |
PPC-800 | 1376.04 | 0.70 | 2.05 |
Table 1. Textural properties of the samples activated at different temperatures.
Sample | SBET (m2 g-1) | Vpore (cm3 g-1) | Dpore (nm) |
---|---|---|---|
PPC-650 | 1145.42 | 0.58 | 2.00 |
PPC-700 | 1174.40 | 0.59 | 2.02 |
PPC-750 | 1330.59 | 0.71 | 2.11 |
PPC-800 | 1376.04 | 0.70 | 2.05 |
Fig. 6. Impedance matching characteristic of (a) PPC-650, (b) PPC-700, (c) PPC-750, and (d) PPC-800. (e) α of PPC samples. (f) Comparison of the RL versus EAB for typical biomass-derived carbon materials.
[1] |
H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang, G.S. Wang, Y. Huang, Nano-Micro Lett. 13 (2021) 206.
DOI URL |
[2] |
L. Wang, Z.L. Ma, Y.L. Zhang, H. Qiu, K.P. Ruan, J.W. Gu, Carbon Energy 4 (2022) 200-210.
DOI URL |
[3] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[4] |
R.W. Shu, J.B. Zhang, Y. Wu, Z.L. Wan, X.H. Li, Nanoscale 13 (2021) 4 485-4 495.
DOI URL |
[5] |
M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small 14 (2018) 1800987.
DOI URL |
[6] |
B. Quan, G.Y. Xu, W.H. Gu, J.Q. Sheng, G.B. Ji, J. Colloid Interface Sci. 533 (2019) 297-303.
DOI URL |
[7] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem.-Int. Edit. 61 (2022) e202200705. |
[8] |
G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H. L. Lv, Chem. Eng. J. 333 (2018) 519-528.
DOI URL |
[9] |
H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang, G. Chen, C.J. Dong, L.H. Wang, C. H. Gong, Compos. Pt. B-Eng. 207 (2021) 108562.
DOI URL |
[10] |
Y. Zhang, L. Yang, L. Yan, G. Wang, A.H. Liu, Coord. Chem. Rev. 391 (2019) 69-89.
DOI URL |
[11] |
T.Y. Wei, X.L. Wei, Y. Gao, H.M. Li, Electrochim. Acta 169 (2015) 186-194.
DOI URL |
[12] |
Y. Liu, Z.J. Shi, Y.F. Gao, W.D. An, Z.Z. Cao, J.R. Liu, ACS Appl. Mater. Interfaces 8 (2016) 28283-28290.
DOI URL |
[13] |
H.T. Guan, H.Y. Wang, Y.L. Zhang, C.J. Dong, G. Chen, Y.D. Wang, J.B. Xie, Appl. Surf. Sci. 447 (2018) 261-268.
DOI URL |
[14] |
D.F. Xu, C.J. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y.H. Huang, L.N. Zhang, Adv. Energy Mater. 6 (2016) 1501929.
DOI URL |
[15] |
X.H. Zhang, K. Zhang, H.X. Li, Q. Cao, L.E. Jin, P. Li, J. Power Sources 344 (2017) 176-184.
DOI URL |
[16] |
K. Wang, R. Yan, N. Zhao, X.D. Tian, X. Li, S.W. Lei, Y. Song, Q.G. Guo, L. Liu, Mater. Lett. 174 (2016) 249-252.
DOI URL |
[17] |
X. Li, E.B. Cui, Z. Xiang, L.Z. Yu, J. Xiong, F. Pan, W. Lu, J. Alloy. Compd. 819 (2020) 152952.
DOI URL |
[18] | L.J. Xie, G.H. Sun, F.Y. Su, X.Q. Guo, Q.Q. Kong, X.M. Li, X.H. Huang, L. Wan, W. Song, K.X. Li, C.X. Lv, C.M. Chen, J. Mater. Chem. A 4 (2016) 1637-1646. |
[19] |
C.W. Wang, J.F. Huang, H. Qi, L.Y. Cao, Z.W. Xu, Y.Y. Cheng, X.X. Zhao, J.Y. Li, J. Power Sources 358 (2017) 85-92.
DOI URL |
[20] |
X.X. Sun, M.L. Yang, S. Yang, S.S. Wang, W.L. Yin, R.C. Che, Y.B. Li, Small 15 (2019) 1902974.
DOI URL |
[21] |
L.Y. Liu, S. Yang, H.Y. Hu, T.L. Zhang, Y. Yuan, Y.B. Li, X.D. He, ACS Sustainable Chem. Eng. 7 (2019) 1228-1238.
DOI URL |
[22] |
P. Cheng, S.Y. Gao, P.Y. Zang, X.F. Yang, Y.L. Bai, H. Xu, Z.H. Liu, Z.B. Lei, Carbon 93 (2015) 315-324.
DOI URL |
[23] |
H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G.B. Ji, Y.W. Du, ACS Sustainable Chem. Eng. 6 (2018) 15850-15857.
DOI URL |
[24] |
S.K. Singh, H. Prakash, M.J. Akhtar, K.K. Kar, ACS Sustainable Chem. Eng. 6 (2018) 5381-5393.
DOI URL |
[25] |
K.L. Zhang, W.X. Lv, J. Chen, H.Y. Ge, C.X. Chu, D.B. Tang, Compos. Pt. B-Eng. 169 (2019) 1-8.
DOI URL |
[26] |
H.B. Ouyang, Q.Q. Gong, C.Y. Li, J.F. Huang, Z.W. Xu, Mater. Lett. 235 (2019) 111-115.
DOI |
[27] | H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.P. Wang, G.B. Ji, Z.C.J. Xu, Nano-Micro Lett. 11 (2019) 24. |
[28] |
M.Y. Song, H.Y. Park, D.S. Yang, D. Bhattacharjya, J.S. Yu, ChemSusChem 7 (2014) 1755-1763.
DOI URL |
[29] |
H.Q. Zhao, Y. Cheng, Z. Zhang, B.S. Zhang, C.C. Pei, F.Y. Fan, G.B. Ji, Carbon 173 (2021) 501-511.
DOI URL |
[30] |
Z.P. Zhang, X.J. Gao, M.L. Dou, J. Li, F. Wang, Small 13 (2017) 1604290.
DOI URL |
[31] | J.B. Xi, E.Z. Zhou, Y.J. Liu, W.W. Gao, J. Ying, Z.C. Chen, C. Gao, Carbon 124 (2017) 4 92-4 98. |
[32] |
H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, Y.W. Du, Chem. Eng. J. 339 (2018) 432-441.
DOI URL |
[33] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
[34] |
L. Guo, S.S. Gao, Q.D. An, Z.Y. Xiao, S.R. Zhai, D.J. Yang, L. Cui, RSC Adv. 9 (2019) 766-780.
DOI URL |
[35] |
X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu, M. Zhang, H.J. Cao, G.L. Wu, Carbon 152 (2019) 827-836.
DOI URL |
[36] |
Z. Xiang, B.W. Deng, C. Huang, Z.C. Liu, Y.M. Song, W. Lu, J. Alloy. Compd. 822 (2020) 153570.
DOI URL |
[37] |
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, P.H. Gao, Carbon 187 (2022) 404-414.
DOI URL |
[38] |
Y. Wei, H.J. Liu, S.C. Liu, M.M. Zhang, Y.P. Shi, J.W. Zhang, L. Zhang, C.H. Gong, Compos. Commun. 9 (2018) 70-75.
DOI URL |
[39] |
Q. Huang, C.Z. Bao, Q.Y. Wang, C.J. Dong, H.T. Guan, Appl. Surf. Sci. 515 (2020) 145974.
DOI URL |
[40] | X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, Q.T Zhang, Nanoscale 9 (2017) 7408-7418. |
[41] |
C.Y. Ding, H. Fu, T. Wu, Y.W. Tang, X.S. Hu, S.S. Wu, L.J. Zhang, G.W. Wen, X. X. Huang, Carbon 191 (2022) 424-432.
DOI URL |
[42] |
A.M. Xie, K. Zhang, M.X. Sun, Y.L. Xia, F. Wu, Mater. Des. 154 (2018) 192-202.
DOI URL |
[43] |
X.H. Liang, G.H. Wang, W.H. Gu, G.B. Ji, Carbon 177 (2021) 97-106.
DOI URL |
[44] |
Q.S. Li, J.J. Zhu, S.N. Wang, F. Huang, Q.C. Liu, X.K. Kong, Carbon 161 (2020) 639-646.
DOI URL |
[45] |
X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, X.M. Wu, Carbon 179 (2021) 566-578.
DOI URL |
[46] |
H.J. Wu, M. Qin, L.M. Zhang, Compos. Pt. B-Eng. 182 (2020) 107620.
DOI URL |
[47] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon 142 (2019) 245-253.
DOI URL |
[48] | J.Y. Fang, Y.S. Shang, Z. Chen, W. Wei, Y. Hu, X.G. Yue, Z.H. Jiang, J. Mater. Chem. C 5 (2017) 4695-4705. |
[49] |
Z.C. Liu, F. Pan, B.W. Deng, Z. Xiang, W. Lu, Carbon 174 (2021) 59-69.
DOI URL |
[50] |
N.N. Wang, F. Wu, A.M. Xie, X.Q. Dai, M.X. Sun, Y.Y. Qiu, Y. Wang, X.L. Lv, M. Y. Wang, RSC Adv. 5 (2015) 40531-40535.
DOI URL |
[51] |
C.Y. Liang, Z.J. Wang, Chem. Eng. J. 373 (2019) 598-605.
DOI URL |
[52] |
H.L. Xu, X.W. Yin, Z.C. Li, C.L. Liu, Z.Y. Wang, M.H. Li, L.T. Zhang, L.F. Cheng, Nanotechnology 29 (2018) 184003.
DOI URL |
[1] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[2] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[3] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[4] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[5] | Zhang Yunfei, Li Yulong, Wei Mengmeng, Yang Dengtao, Zhang Qiuyu, Zhang Baoliang. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 128(0): 148-159. |
[6] | Sun Hengda, Zhang Ying, Wu Yue, Zhao Yue, Zhou Ming, Liu Lie, Tang Shaolong, Ji Guangbin. Broadband absorption of macro pyramid structure based flame retardant absorbers [J]. J. Mater. Sci. Technol., 2022, 128(0): 228-238. |
[7] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[8] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[9] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[10] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[11] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[12] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
[13] | Kwang Kyu Ko, Hyo Ju Bae, Eun Hye Park, Hyeon-Uk Jeong, Hyoung Seok Park, Jae Seok Jeong, Jung Gi Kim, Hyokyung Sung, Nokeun Park, Jae Bok Seol. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117(0): 225-237. |
[14] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[15] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||