J. Mater. Sci. Technol. ›› 2022, Vol. 109: 54-63.DOI: 10.1016/j.jmst.2021.07.054
• Research Article • Previous Articles Next Articles
P.-C. Zhaoa, B. Guanb, Y.-G. Tongc, R.-Z. Wanga, X. Lia, X.-C. Zhanga,*(), S.-T Tua
Received:
2021-07-08
Accepted:
2021-07-20
Published:
2021-10-24
Online:
2021-10-24
Contact:
X.-C. Zhang
About author:
* E-mail address: xczhang@ecust.edu.cn (X.-C. Zhang).P.-C. Zhao, B. Guan, Y.-G. Tong, R.-Z. Wang, X. Li, X.-C. Zhang, S.-T Tu. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure[J]. J. Mater. Sci. Technol., 2022, 109: 54-63.
Fig. 2. EBSD and EDS characterization of the as-received CoCrNi MEA: (a) EBSD orientation map, the IPF triangle is shown in the upper right corner of the map; (b) grain size distribution histogram; (c) IAMA map; (d) grain boundary misorientation distribution; (e) EDS mapping results of Cobalt, Chromium and Nickel elements.
Fig. 3. Metallographic micrograph under OM and layer by layer bright/dark field TEM micrographs as well as corresponding SAED patterns of the cross-sectional nano-gradient CoCrNi MEA processed by USRP.
Fig. 6. Representative layer by layer study of annealed specimen after annealing at 900°C for 15 min: (a) Method of grouping by layer depth in EBSD data; (b) and (c) IAMA map and corresponding percentage; (d) and (e) KAM map and local misorientation value.
Fig. 7. Evolution of CSLBs of the specimen after annealing tests: (a) CSL boundary distribution of the specimen after annealing at 900°C for 15 min (b) percentage of corresponding CSLBs; (c) three dimensional diagram of the evolution of Σ3 CSLBs proportion during annealing.
Fig. 9. (a-d) Grain growth kinetics of Group 1-4 as a function of annealing time at different annealing temperatures. (e-h) Graphical calculation of the grain growth activation energy from ln (D1/n-D01/n) vs. 1/T lines. (The slope of the lines equals to -(Q/R)).
[1] |
S.Y. Anaman, S. Ansah, H.H. Cho, M.G. Jo, H.N. Han, J. Mater. Sci. Technol. 87 (2021) 60-73.
DOI |
[2] |
D.B. Miracle, O.N. Semkov, Acta Mater 122 (2017) 448-511.
DOI URL |
[3] |
M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, X. Wu, Scr. Mater. 172 (2019) 66-71.
DOI URL |
[4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[5] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[6] |
M.J.R. Haché, C. Cheng, Y. Zou, J. Mater. Res. 35 (2020) 1051-1075.
DOI URL |
[7] |
N.T. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Nat. Commun. 11 (2020) 2736.
DOI URL |
[8] |
J. Huang, K.M. Zhang, Y.F. Jia, C.C. Zhang, X.C. Zhang, X.F. Ma, S.T. Tu, J. Mater. Sci. Technol. 35 (2019) 409-417.
DOI |
[9] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[10] |
J.R. Weertman, Science 337 (2012) 921-922.
DOI PMID |
[11] |
T. Chookajorn, M.A. Heather, A.S. Christopher, Science 337 (2012) 951-954.
DOI PMID |
[12] |
B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Acta Mater 173 (2019) 142-152.
DOI |
[13] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
DOI PMID |
[14] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68 (2013) 526-529.
DOI URL |
[15] |
P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, S. Tu, Acta Mater 174 (2019) 29-42.
DOI |
[16] |
R.W. Armstrong, Mater. Trans. 55 (2014) 2-12.
DOI URL |
[17] |
F. Abdeljawad, S.M. Foiles, Acta Mater 101 (2015) 159-171.
DOI URL |
[18] |
A.J. Ardell, P. Bellon, Curr. Opin. Solid State Mater. Sci. 20 (2016) 115-139.
DOI URL |
[19] |
J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Scr. Mater. 187 (2020) 335-339.
DOI URL |
[20] |
J. Fan, L. Zhu, J. Lu, T. Fu, A. Chen, Scr. Mater. 184 (2020) 41-45.
DOI URL |
[21] |
Q. Pan, L. Lu, Scr. Mater. 187 (2020) 301-306.
DOI URL |
[22] |
L. Jing, Q. Pan, J. Long, N. Tao, L. Lu, Scr. Mater. 161 (2019) 74-77.
DOI URL |
[23] |
X. Li, L. Lu, J. Li, X. Zhang, H. Gao, Nat. Rev. Mater. 5 (2020) 706-723.
DOI URL |
[24] |
W.L. Li, N.R. Tao, K. Lu, Scr. Mater. 59 (2008) 546-549.
DOI URL |
[25] |
X. Wu, Y. Zhu, K. Lu, Scr. Mater. 186 (2020) 321-325.
DOI URL |
[26] |
X. Zhou, X.Y. Li, K. Lu, Science 360 (2018) 526-530.
DOI PMID |
[27] |
C. Xin, D. Yang, Q. Sun, L. Xiao, J. Sun, J. Mater. Sci. 55 (2019) 4926-4939.
DOI URL |
[28] |
K. Lu, Nat. Rev. Mater. 1 (2016) 16019.
DOI URL |
[29] |
X. Zhou, X. Li, K. Lu, Phys. Rev. Lett. 122 (2019) 126101.
DOI URL |
[30] |
P.C. Zhao, G.J. Yuan, R.Z. Wang, B. Guan, Y.F. Jia, X.C. Zhang, S.T. Tu, J. Mater. Sci. Technol. 83 (2021) 196-207.
DOI URL |
[31] |
Y. Liu, L. Wang, D. Wang, J. Mater, Process. Technol. 211 (2011) 2106-2113.
DOI URL |
[32] |
K.P. Mingard, B. Roebuck, E.G. Bennett, M.G. Gee, H. Nordenstrom, G. Sweet-man, P. Chan, Int. J. Refract. Met. Hard Mater. 27 (2009) 213-223.
DOI URL |
[33] |
P.C. Zhao, B. Chen, Z.G. Zheng, B. Guan, X.C. Zhang, S.T. Tu, Metall. Mater. Trans. A 52 (2020) 394-412.
DOI URL |
[34] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Acta Mater 128 (2017) 292-303.
DOI URL |
[35] |
T.L. Achmad, W. Fu, C. Hao, Z. Chi, Z.G. Yang, J. Alloys Compd. 694 (2017) 1265-1279.
DOI URL |
[36] |
Y. Zhao, T.A. Furnish, M.E. Kassner, A.M. Hodge, J. Mater. Res. 27 (2012) 3049-3057.
DOI URL |
[37] |
J.M. Zhang, K.W. Xu, V. Ji, Appl. Surf. Sci. 187 (2002) 60-67.
DOI URL |
[38] |
F. Ma, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 242 (2005) 55-61.
DOI URL |
[39] |
T. LaGrange, B.W. Reed, M. Wall, J. Mason, T. Barbee, M. Kumar, Appl. Phys. Lett. 102 (2013) 011905.
DOI URL |
[40] |
D. Bufford, H. Wang, X. Zhang, J. Mater. Res. 28 (2013) 1729-1739.
DOI URL |
[41] |
J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58 (2010) 2262-2270.
DOI URL |
[42] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater 116 (2016) 43-52.
DOI URL |
[43] | F.J. Humphreys, M. Hatherly, in: Recrystallization and Related Annealing Phe-nomena, Pergamon, 1995, pp. 57-83. |
[44] |
K. Kashihara, F. Inoko, Acta Mater 49 (2001) 3051-3061.
DOI URL |
[45] |
A. Khosravani, J. Scott, M.P. Miles, D. Fullwood, B.L. Adams, R.K. Mishra, Int. J. Plast. 45 (2013) 160-173.
DOI URL |
[46] |
X. Zhou, X.Y. Li, K. Lu, Science 360 (2018) 526-530.
DOI PMID |
[47] |
X.Y. Li, X. Zhou, K. Lu, Sci. Adv. 6 (2020) eaaz8003.
DOI URL |
[48] |
M. Hoseini, M. Hamid Pourian, F. Bridier, H. Vali, J.A. Szpunar, P. Bocher, Mater. Sci. Eng. A 532 (2012) 58-63.
DOI URL |
[49] |
H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu, Int. Mater. Rev. 62 (2017) 303-333.
DOI URL |
[50] |
K.A. Darling, B.K. VanLeeuwen, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 527 (2010) 3572-3580.
DOI URL |
[51] |
M. Hillert, Acta Metall 13 (1965) 227-238.
DOI URL |
[52] | F.J. Humphreys, M. Hatherly, in: Recrystallization and Related Annealing Phe-nomena (Second Edition), Elsevier, 2004, pp. 541-556. |
[53] |
X. Zhou, X.Y. Li, K. Lu, Scr. Mater. 187 (2020) 345-349.
DOI URL |
[54] | K.L. Merkle, Microsc. Microanal. 3 (1997) 339-351. |
[55] |
A.A. Nazarov, Lett. Mater 8 (2018) 372-381.
DOI URL |
[56] |
J.A. Bahena, T. Juarez, L. Velasco, A.M. Hodge, Scr. Mater. 190 (2021) 27-31.
DOI URL |
[1] | L. Tang, F.Q. Jiang, J.S. Wróbel, B. Liu, S. Kabra, R.X. Duan, J.H. Luan, Z.B. Jiao, M.M. Attallah, D. Nguyen-Manh, B. Cai. In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 116(0): 103-120. |
[2] | Qiang Luo, Donghui Li, Mingjuan Cai, Siyi Di, Zhengguo Zhang, Qiaoshi Zeng, Qianqian Wang, Baolong Shen. Excellent magnetic softness-magnetization synergy and suppressed defect activation in soft magnetic amorphous alloys by magnetic field annealing [J]. J. Mater. Sci. Technol., 2022, 116(0): 72-82. |
[3] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[4] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[5] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[6] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[7] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
[8] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[9] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[10] | Wen Zhang, Lei Chen, Chenguang Xu, Xuming Lv, Yujin Wang, Jiahu Ouyang, Yu Zhou. Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering [J]. J. Mater. Sci. Technol., 2022, 110(0): 57-64. |
[11] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[12] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[13] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[14] | Yuhui Zhu, Weizhen Wang, Yuanyuan Song, Shiming Zhang, Hong Li, Aimin Wang, Haifeng Zhang, Zhengwang Zhu. Atomic-scale Nb heterogeneity induced icosahedral short-range ordering in metallic glasses [J]. J. Mater. Sci. Technol., 2022, 108(0): 73-81. |
[15] | X.B. Meng, J.G. Li, C.N. Jing, J.D. Liu, S.Y. Ma, J.J. Liang, C.W. Zhang, M. Wang, B.T. Tang, T. Lin, J.L. Chen, X.L. Zhang, Q. Li. Misorientation dependent thermal condition-solute field cooperative effect on competitive grain growth in the converging case during directional solidification of a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 151-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||