J. Mater. Sci. Technol. ›› 2022, Vol. 114: 215-221.DOI: 10.1016/j.jmst.2021.10.032
• Research Article • Previous Articles Next Articles
Guangpeng Suna, Xing Fenga, Xue Wua,b, Sitong Zhanga, Bin Wena,*()
Received:
2021-08-15
Revised:
2021-10-15
Accepted:
2021-10-28
Published:
2022-07-01
Online:
2022-01-19
Contact:
Bin Wen
About author:
* wenbin@ysu.edu.cn (B. Wen).Guangpeng Sun, Xing Feng, Xue Wu, Sitong Zhang, Bin Wen. Is hardness constant in covalent materials?[J]. J. Mater. Sci. Technol., 2022, 114: 215-221.
Fig. 1. Crystal structures and hardness of 3C-diamond and 2H-diamond. (A) Unit cell and projection of 3C-diamond onto the (11¯0) plane. (B) Unit cell and projection of 2H-diamond onto the (21¯1¯0) plane. Brown balls represent carbon atoms. Red and blue lines indicate the shuffle-set and glide-set on {111} slip planes, respectively. (C) and (D) Calculated hardness compared to experimental data for 3C-diamond and 2H-diamond as a function of temperature and grain size. (E) Calculated hardness for 3C-diamond and 2H-diamond as a function of dislocation density. (F) Calculated hardness for 3C-diamond and 2H-diamond as a function of the strain rate.
Fig. 2. Influence of crystal lattice on the hardness of 3C-diamond and 2H-diamond. (A) and (B) Distributions of the Schmid factor for 3C-diamond and 2H-diamond as functions of loading direction. (C) and (D) Slip dislocation types for 3C-diamond and 2H-diamond.
Fig. 3. Calculated CRSS and hardness as a function of grain size and grain orientation. (A) CRSS for slip dislocation in 3C-diamond as a function of grain size. The Hall-Petch effect obtained by decreasing the grain size is used to evaluate the CRSS for slip dislocation. The inset shows the CRSS for dislocation motion at 300 K. (B) CRSS for slip dislocation in 2H-diamond as a function of grain size. (C) and (D) Hardness for 3C-diamond and 2H-diamond as functions of grain orientation.
Fig. 4. Relative activities of slip dislocations as functions of temperature, dislocation density, and strain rate. (A) and (B) Variations in slip dislocation types with stress direction and temperature for 3C-diamond and 2H-diamond. Schmid's law is used for the slip dislocations, and α is limited to zero. (C) and (D) The variations in slip dislocation types with the stress direction, dislocation density, and strain rate for 2H-diamond.
Fig. 5. Multiple spatial scales and external factors influence the hardness of covalent materials. The hardness of covalent materials is determined by multiple spatial scale combinations of chemical bonds, crystal lattices, defects, grains, and external factors, leading to variable hardness.
[1] |
R. Wentorf, R.C. DeVries, F. Bundy, Science 208 (1980) 873-880.
URL PMID |
[2] | H.K. Mao, X.J. Chen, Y. Ding, B. Li, L. Wang, Rev. Mod. Phys. 90 (2018) 015007. |
[3] |
R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308 (2005) 1268-1269.
DOI URL |
[4] |
J.J. Gilman, Mater. Res. Innov. 6 (2002) 112-117.
DOI URL |
[5] | F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Phy. Rev. Lett. 91 (2003) 015502. |
[6] | A. Šimůnek, J. Vackář, Phy. Rev. Lett. 96 (2006) 085501. |
[7] | K. Li, X. Wang, F. Zhang, D. Xue, Phy. Rev. Lett. 100 (2008) 235504. |
[8] | A.O. Lyakhov, A.R. Oganov, Phys. Rev. B 84 (2011) 092103. |
[9] |
X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (2011) 1275-1281.
DOI URL |
[10] | E. Mazhnik, A.R. Oganov, J. Appl. Phys. 126 (2019) 125109. |
[11] | E. Mazhnik, A.R. Oganov, J. Appl. Phys. 128 (2020) 075102. |
[12] |
V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Philos. Mag. A 82 (2002) 231-253.
DOI URL |
[13] |
J. Haines, J. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31 (2001) 1-23.
DOI URL |
[14] |
A. Nie, Y. Bu, J. Huang, Y. Shao, Y. Zhang, W. Hu, J. Liu, Y. Wang, B. Xu, Z. Liu, Matter 2 (2020) 1222-1232.
DOI URL |
[15] |
A. Misra, J. Hirth, R. Hoagland, Acta Mater. 53 (2005) 4817-4824.
DOI URL |
[16] | K. Chen, L. Li, Adv. Mater. 31 (2019) 1901115. |
[17] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) eaau1925. |
[18] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon-tis, Nature 563 (2018) 546-550.
DOI URL |
[19] |
A. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scr. Metall. 23 (1989) 1679-1683.
DOI URL |
[20] | J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982. |
[21] | A. Blumenau, M. Heggie, C. Fall, R. Jones, T. Frauenheim, Phys. Rev. B 65 (2002) 205205. |
[22] | A. Blumenau, R. Jones, T. Frauenheim, B. Willems, O. Lebedev, G. Van Tendeloo, D. Fisher, P. Martineau, Phys. Rev. B 68 (2003) 014115. |
[23] |
X. Feng, J. Xiao, B. Wen, J. Zhao, B. Xu, Y. Wang, Y. Tian, Sci. China Mater. 64 (2021) 2280-2288.
DOI URL |
[24] | J. Wheeler, J. Michler, Rev. Sci. Instrum. 84 (2013) 101301. |
[25] | T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Nature 421 (2003) 599-600. |
[26] |
H. Tang, M. Wang, D. He, Q. Zou, Y. Ke, Y. Zhao, Carbon 108 (2016) 1-6 N Y.
DOI URL |
[27] |
Y. Liu, G. Zhan, Q. Wang, D. He, J. Zhang, A. Liang, T.E. Moellendick, L. Zhao, X. Li, Sci. Rep. 9 (2019) 1-6.
DOI URL |
[28] |
A. Bochko, O. Grigor’ev, S. Dzhamarov, G. Karyuk, Y.V. Mil’man, V. Trefilov, Powder Metall. Met. Ceram. 16 (1977) 457-462.
DOI URL |
[29] | D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, New York, 2009. |
[30] |
R. Sánchez-Martín, M. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, J. Molina-Aldareguia, Acta Mater. 71 (2014) 283-292.
DOI URL |
[31] |
S. Shang, W. Wang, B. Zhou, Y. Wang, K. Darling, L. Kecskes, S. Mathaudhu, Z. Liu, Acta Mater. 67 (2014) 168-180.
DOI URL |
[32] |
X.L. Nan, H.Y. Wang, L. Zhang, J.B. Li, Q.C. Jiang, Scr. Mater. 67 (2012) 443-446.
DOI URL |
[33] | M. Barnett, Z. Keshavarz, X. Ma, Metall. Mater. Trans. A 37A (2006) 2283-2293. |
[34] |
B. Wen, B. Xu, Y. Wang, G. Gao, X.F. Zhou, Z. Zhao, Y. Tian, NPJ Comput. Mater. 5 (2019) 117.
DOI URL |
[35] | E. Hall, Proc. Phys. Soc., Lond. Sect. B 64 (1951) 747-753. |
[36] |
H. Huang, F. Spaepen, Acta Mater. 48 (2000) 3261-3269.
DOI URL |
[37] |
H. Sumiya, S. Uesaka, S. Satoh, J. Mater. Sci. 35 (2000) 1181-1186.
DOI URL |
[38] | Q. Tao, X. Wei, M. Lian, H. Wang, X. Wang, S. Dong, T. Cui, P. Zhu, Carbon 120 (2017) 405-410 N Y. |
[39] |
J. Gilman, J. Appl. Phys. 46 (1975) 5110-5113.
DOI URL |
[40] |
R. Limbach, B.P. Rodrigues, L. Wondraczek, J. Non Cryst. Solids 404 (2014) 124-134.
DOI URL |
[41] | J. Liu, G. Zhan, Q. Wang, X. Yan, F. Liu, P. Wang, L. Lei, F. Peng, Z. Kou, D. He, Appl. Phys. Lett. 112 (2018) 061901. |
[42] |
Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Nature 510 (2014) 250-253.
DOI URL |
[43] |
J. Xiao, H. Yang, X. Wu, F. Younus, P. Li, B. Wen, X. Zhang, Y. Wang, Y. Tian, Sci. Adv. 4 (2018) eaat8195.
DOI URL |
[44] |
J. Oliveira, B. Crispim, Z. Zeng, T. Omori, F.B. Fernandes, R. Miranda, J. Mater, Process. Technol. 271 (2019) 93-100.
DOI URL |
[45] | J. Oliveira, J. Shen, J. Escobar, C. Salvador, N. Schell, N. Zhou, O. Benafan, Mater. Des. 202 (2021) 109533. |
[46] | J. Oliveira, J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou, H.S. Kim, Scr. Mater. 206 (2022) 114219. |
[47] |
Y.V. Milman, А. Golubenko, S. Dub, Acta Mater. 59 (2011) 7480-7487.
DOI URL |
[48] |
M.M. Chaudhri, Y.Y. Lim, Nat. Mater. 4 (2005) 4 -4.
DOI URL |
[49] | D. Tabor, The Hardness of Metals, Oxford University Press, 2000. |
[50] | R. Hill, Proc. Phys. Soc., Lond. Sect. A 65 (1952) 349-355. |
[51] | A. Togo, F. Oba, I. Tanaka, Phy. Rev. B 78 (2008) 134106. |
[52] | G. Kresse, J. Hafner, Phy. Rev. B 48 (1993) 13115. |
[53] | P.E. Blöchl, Phy. Rev. B 50 (1994) 17953. |
[54] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett. 77 (1996) 3865-3868.
DOI URL |
[1] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[2] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[3] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[4] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[5] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[6] | H.X. Xue, X.C. Cai, Visualization, B.R. Sun, Visualization, X. Shen, C.C. Du, X.J. Wang, Project administration, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
[7] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[8] | G. Karthick, Lavanya Raman, B.S. Murty. Phase evolution and mechanical properties of novel nanocrystalline Y2(TiZrHfMoV)2O7 high entropy pyrochlore [J]. J. Mater. Sci. Technol., 2021, 82(0): 214-226. |
[9] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[10] | Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 194-204. |
[11] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[12] | Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 47-53. |
[13] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
[14] | Ruihong Wang, Shengyu Jiang, Bao’an Chen, Zhixiang Zhu. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 78-84. |
[15] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 42(0): 85-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||