J. Mater. Sci. Technol. ›› 2022, Vol. 114: 206-214.DOI: 10.1016/j.jmst.2021.11.021
• Research Article • Previous Articles Next Articles
Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong*()
Received:
2021-10-04
Revised:
2021-11-01
Accepted:
2021-11-04
Published:
2022-07-01
Online:
2022-01-19
Contact:
Jie Kong
About author:
* kongjie@nwpu.edu.cn (J. Kong).Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 114: 206-214.
Fig. 1. Schematic routes of synthesis of ZIF-8 by combining Zn2+ ions and 2-MeIM in MeOH at room temperature and preparation of yolk-shell ZIF-8 and hollow ZIF-8 structures using H+ ions infiltrating into the interior space under protection of TA coating.
Fig. 4. TEM images of (a) ZnO/NC-700, (b) YS-ZnO/NC-700, (c) H-ZnO/NC-700, (d) ZnO/NC-800, (e) YS-ZnO/NC-800, (f) H-ZnO/NC-800. EDS maps of (C, N, O, Zn) elements for (g) H-ZnO/NC-700 and (h) H-ZnO/NC-800.
Fig. 7. ε′, ε", and tanδ parameters vs. frequency for (a-c) ZnO/NC-700, YS-ZnO/NC-700 and H-ZnO/NC-700 composites and (d-f) ZnO/NC-800, YS-ZnO/NC-800 and H-ZnO/NC-800 samples.
Fig. 8. (a, b) RC parameters of H-ZnO/NC-700 and H-ZnO/NC-800 absorbers evenly dispersed in the paraffin (35 wt% and 15 wt% contents, respectively) vs. frequency. (c, d) 3D plots of thickness vs. frequency. The composite thicknesses were1.0, 1.5, 2.0, 2.5, 3.0, 3.1, 3.5, 4.0, and 4.5 mm and the frequency ranged from 2 to 18 GHz.
Sample | EAB(GHz, RC<-10 dB) | RCmin (dB) | Content | Refs. |
---|---|---|---|---|
CNT/ZIF-8 | 6.9 | -39.2 | 25% | [ |
Core-shell ZIF-8@HZIF-CoMo | 6.56 | -44.8 | 30% | [ |
MnO2/ZIF-8@ZIF-67 | 5.36 | -58.0 | 35% | [ |
Graphene-ZIF-8 | 3.9 | -44.0 | 40% | [ |
NPC-800 | 4.3 | -39.7 | 50% | [ |
ZnO/NPC@Co/NPC | 5.2 | -28.8 | 50% | [ |
H-ZnO/NC-700 | 4.0 | -51.2 | 35% | This work |
H-ZnO/NC-800 | 4.0 | -52.4 | 15% |
Table 1. Comparison of EMW absorption characteristics of complex materials derived from ZIF-8 (this study and other works).
Sample | EAB(GHz, RC<-10 dB) | RCmin (dB) | Content | Refs. |
---|---|---|---|---|
CNT/ZIF-8 | 6.9 | -39.2 | 25% | [ |
Core-shell ZIF-8@HZIF-CoMo | 6.56 | -44.8 | 30% | [ |
MnO2/ZIF-8@ZIF-67 | 5.36 | -58.0 | 35% | [ |
Graphene-ZIF-8 | 3.9 | -44.0 | 40% | [ |
NPC-800 | 4.3 | -39.7 | 50% | [ |
ZnO/NPC@Co/NPC | 5.2 | -28.8 | 50% | [ |
H-ZnO/NC-700 | 4.0 | -51.2 | 35% | This work |
H-ZnO/NC-800 | 4.0 | -52.4 | 15% |
Fig. 10. EMW absorption mechanism of ZnO/NC, YS-ZnO/NC and H-ZnO/NC nanocomplexes: the multiply reflected EMW in the H-ZnO/NC absorber. The presence of pyridinic N, pyrrolic N and graphitic N leads to the emergence of more polarization centers at a higher pyrolysis temperature.
[1] |
H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, ACS Appl. Mater. Interfaces 9 (2017) 5660-5668.
DOI URL |
[2] | P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun. 24 (2021) 100653. |
[3] | H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, Adv. Funct. Mater. 30 (2020) 1907251. |
[4] | J. Luo, H. Li, N.C. Deziel, H. Huang, N. Zhao, S. Ma, X. Ni, R. Udelsman, Y. Zhang, Environ. Res. 182 (2020) 109013. |
[5] | Y. Zhang, K. Ruan, J. Gu, Small 17 (2021) 2101951. |
[6] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[7] |
H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, Nat. Commun. 12 (2021) 834.
DOI URL |
[8] |
A.A. Al-Ghamdi, A.A. Al-Ghamdi, Y. Al-Turki, F. Yakuphanoglu, F. El-Tantawy, Compos. Pt. B-Eng. 88 (2016) 212-219.
DOI URL |
[9] |
F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Compos. Pt. B-Eng. 137 (2018) 260-277.
DOI URL |
[10] |
N.N. Wu, D.M. Xu, Z. Wang, F.L. Wang, J.R. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z.H. Guo, Carbon 145 (2019) 433-444.
DOI URL |
[11] | Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 30 (2020) 2000475. |
[12] | X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu, B. Xu, L. Bi, G. Wu, Chem. Eng. J. 420 (2021) 129907. |
[13] |
Y. Lu, S. Zhang, M. He, L. Wei, Y. Chen, R. Liu, Carbon 178 (2021) 413-435.
DOI URL |
[14] | H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang, J. Mater. Chem. A 9 (2021) 19710-19718. |
[15] | T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J.Mater. Sci. Technol. 68 (2021) 61-69. |
[16] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[17] | X.L. Ye, Z.F. Chen, M. Li, T. Wang, C. Wu, J.X. Zhang, Q.B. Zhou, H.Z. Liu, S. Cui, A.C.S. Sustain, Chem. Eng. 7 (2019) 18395-18404. |
[18] | S.B. Cao, H.B. Liu, L. Yang, Y.H. Zou, X.H. Xia, H. Chen, J.Magn. Magn. Mater. 458 (2018) 217-224. |
[19] |
X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, W. Wu, X.H. Liu, B.H. Xu, G.L. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[20] | C. Zhang, C. Long, S. Yin, R.G. Song, B.H. Zhang, J.W. Zhang, D.P. He, Q. Cheng, Mater. Des. 206 (2021) 109768. |
[21] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI URL |
[22] | B. Zhao, J. Deng, R. Zhang, L. Liang, B. Fan, Z. Bai, G. Shao, C.B. Park, Eng. Sci. 3 (2018) 5-40. |
[23] | Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Adv. Sci. 6 (2019) 1801057. |
[24] | J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Nano-Micro Lett. 13 (2021) 175. |
[25] |
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI URL |
[26] |
M. Liu, X. Yang, W. Shao, T. Wu, R. Ji, B. Fan, G. Tong, Carbon 174 (2021) 625-637.
DOI URL |
[27] |
S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang, Y. Chen, J. Zhang, X. Li, Y. Qin, Carbon 98 (2016) 196-203.
DOI URL |
[28] |
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, X. Han, Carbon 98 (2016) 599-606.
DOI URL |
[29] | P. Miao, J. Cao, J. Kong, J. Li, T. Wang, K.J. Chen, Nanoscale 12 (2020) 13311-13315. |
[30] | Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang, P. Xu, C. Li, Y. Du, A.C.S. Sustain, Chem. Eng. 6 (2018) 8904-8913. |
[31] |
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao, J. Kong, Chem. Mater. 33 (2021) 1789-1798.
DOI URL |
[32] |
X.L. Wang, M.W. Zhang, J.M. Zhao, G.Y. Huang, H.Y. Sun, Appl. Surf. Sci. 427 (2018) 1054-1063.
DOI URL |
[33] |
H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 9 (2017) 6332-6341.
DOI URL |
[34] |
W. Zhang, G. Lu, C. Cui, Y. Liu, S. Li, W. Yan, C. Xing, Y.R. Chi, Y. Yang, F. Huo, Adv. Mater. 26 (2014) 4056-4060.
DOI URL |
[35] |
J.W. Ren, H.W. Langmi, B.C. North, M. Mathe, Int. J. Energy Res. 39 (2015) 607-620.
DOI URL |
[36] |
K.J. Chen, D.G. Madden, S. Mukherjee, T. Pham, K.A. Forrest, A. Kumar, B. Space, J. Kong, Q.Y. Zhang, M.J. Zaworotko, Science 366 (2019) 241-246.
DOI URL |
[37] |
J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, H.J. Yang, W.Q. Cao, Carbon 162 (2020) 157-171.
DOI URL |
[38] |
J. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 48 (2019) 5534-5546.
DOI URL PMID |
[39] |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140 (2018) 2610-2618.
DOI URL |
[40] | Z.L. Wu, L. Wang, S.X. Chen, X.M. Zhu, Q. Deng, J. Wang, Z.L. Zeng, S.G. Deng, Chem. Eng. J. 404 (2020) 126579. |
[41] | M.P. Li, X. Zhang, H. Zhang, W.L. Liu, Z.H. Huang, F. Xie, X.H. Ma, Z.L. Xu, Sep. Purif. Technol. 247 (2020) 116990. |
[42] |
M. Hu, Y. Ju, K. Liang, T. Suma, J.W. Cui, F. Caruso, Adv. Funct. Mater. 26 (2016) 5827-5834.
DOI URL |
[43] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[44] | Y. Long, L. Xiao, Q. Cao, X. Shi, Y. Wang, Chem. Commun. 53 (2017) 10831-10834. |
[45] |
I. Ahmed, B.N. Bhadra, H.J. Lee, S.H. Jhung, Catal. Today 301 (2018) 90-97.
DOI URL |
[46] |
Q. Wang, T. Ina, W.T. Chen, L. Shang, F.F. Sun, S.H. Wei, D. Sun-Waterhouse, S.G. Telfer, T.R. Zhang, G.I.N. Waterhouse, Sci. Bull. 65 (2020) 1743-1751.
DOI URL |
[47] | Q.L. Wu, H.H. Jin, W. Chen, S.Q. Huo, X. Chen, X.G. Su, H. Wang, J. Wang, Mater. Res. Express 5 (2018) 065602. |
[48] |
C.B. Liang, P. Song, H.B. Gu, C. Ma, Y.Q. Guo, H.Y. Zhang, X.J. Xu, Q.Y. Zhang, J.W. Gu, Compos. Pt. A-Appl. Sci. Manuf. 102 (2017) 126-136.
DOI URL |
[49] |
Y.C. Guo, L. Feng, C.C. Wu, X.M. Wang, X. Zhang, J. Catal. 390 (2020) 213-223.
DOI URL |
[50] | Q.L. Wu, J. Wang, H.H. Jin, Y.W. Dong, S.Q. Huo, S. Yang, X.G. Su, B. Zhang, Compos. Sci. Technol. 195 (2020) 108206. |
[51] |
O.A. Maslova, M.R. Ammar, C. Fantini, S.A. Barannikova, M.A. Pimenta, J. Raman Spectrosc. 52 (2020) 670-677.
DOI URL |
[52] | J. Li, P. Miao, K.J. Chen, J.W. Cao, J. Liang, Y.S. Tang, J. Kong, Compos. Pt. B-Eng. 182 (2020) 107613. |
[53] | P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Chem. Eng. J. 381 (2020) 122653. |
[54] |
X.Y. Dai, Y.Z. Du, J.Y. Yang, D. Wang, J.W. Gu, Y.F. Li, S. Wang, B.B. Xu, J. Kong, Compos. Sci. Technol. 174 (2019) 27-32.
DOI URL |
[55] | C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, ACS Appl. Mater. Interfaces 10 (2018) 39307-39318. |
[56] | J. Wang, J. Yang, J. Yang, H. Zhang, Nanotechnology 31 (2020) 414001. |
[57] |
W.H. Huang, X.X. Zhang, Y.N. Zhao, J. Zhang, P.B. Liu, Carbon 167 (2020) 19-30.
DOI URL |
[58] |
W. Xue, G. Yang, S. Bi, J. Zhang, Z.-.L. Hou, Carbon 173 (2021) 521-527.
DOI URL |
[59] |
X. Zhang, S. Zhang, K. Zhang, F. Yan, C.L. Zhu, H.R. Yuan, X.T. Zhang, Y.J. Chen, J. Alloy. Compd. 780 (2019) 718-726.
DOI URL |
[60] |
X. Liang, B. Quan, G. Ji, W. Liu, Y. Cheng, B. Zhang, Y. Du, Inorg. Chem. Front. 3 (2016) 1516-1526.
DOI URL |
[1] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[2] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[3] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[4] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[5] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[6] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[7] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[8] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[9] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[10] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[11] | Ting-Ting Liu, Mao-Qing Cao, Yong-Sheng Fang, Yu-Hang Zhu, Mao-Sheng Cao. Green building materials lit up by electromagnetic absorption function: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 329-344. |
[12] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[13] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[14] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
[15] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||