J. Mater. Sci. Technol. ›› 2022, Vol. 114: 16-28.DOI: 10.1016/j.jmst.2021.11.015
• Research Article • Previous Articles Next Articles
H.X. Xuea,b, X.C. Caia, B.R. Suna, X. Shena, C.C. Dua, X.J. Wanga, T.T. Yanga, S.W. Xina,*(), T.D. Shena,*(
)
Received:
2021-09-23
Revised:
2021-11-06
Accepted:
2021-11-08
Published:
2022-01-15
Online:
2022-01-15
Contact:
S.W. Xin,T.D. Shen
About author:
tdshen@ysu.edu.cn (T.D. Shen).H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability[J]. J. Mater. Sci. Technol., 2022, 114: 16-28.
Fig. 5. Bright-field TEM image of (a) W, (b) W90Ti10, (c) W80Ti20, and (d) W70Ti30 alloys sintered at 1100 °C. Insets showing the corresponding plots for the distribution of grain sizes.
Fig. 6. (a-c) HAADF-STEM images of a W80Ti20 alloy sintered at 1100 °C, with (b) corresponding to the yellow elliptical area in (a); (d-f) EDS mapping images of W, Ti, and W plus Ti, respectively, for image (c); (g) corresponding EDS concentration profiles of W and Ti measured from the EDS line scan performed along the red arrow shown in (c). Vertical dashed line represents the position of grain boundary.
Materials | Process | Grain size (μm) | Hardness (GPa) | Refs. |
---|---|---|---|---|
W80Ti20 | MA + HPS | 0.042 | 16.9 ± 0.3 | This work |
W | Hot rolling | ≥ 40 | 5.0 ± 0.15 | [ |
W-1 wt% Zr-1 wt% ZrC | MA + SPS | 2.76 | 5.3 | [ |
W-0.5 wt%TiC | MA + HIP | 0.071 | 11.6 ± 0.3 | [ |
W-5 wt% Y2O3 | MA + SPS | 0.76 | 6.1 ± 0.07 | [ |
W-4Ti/TiN | MA + SPS | 0.62 | 9.1 | [ |
W-2 wt% Ti-2 wt% La | PLS | ≥ 1 | 7.2 ± 0.46 | [ |
W-10 wt% Ti | PLS | - | 4.4 | [ |
W83Ti17 | MA + HEC | 10 - 20 | 5.1 ± 0.1 | [ |
W85Ti15 | MA + SPS | 0.31 | 9.1 | [ |
W-9.7 wt% Ti | soft chemical route + PLS | - | 6.1 ± 0.2 | [ |
W0.5Cr0.5 | PLS | 1.35 | 6.2 ± 0.9 | [ |
W80Ni10Mo10 | PLS | - | 8.58 ± 0.1 | [ |
W-19. 9wt% Mo | thermal decomposition | 4 - 6 | 5.4 ± 0.2 | [ |
Table 1. Grain size and hardness of the present NC W80Ti20 and previously studied W and W alloys.
Materials | Process | Grain size (μm) | Hardness (GPa) | Refs. |
---|---|---|---|---|
W80Ti20 | MA + HPS | 0.042 | 16.9 ± 0.3 | This work |
W | Hot rolling | ≥ 40 | 5.0 ± 0.15 | [ |
W-1 wt% Zr-1 wt% ZrC | MA + SPS | 2.76 | 5.3 | [ |
W-0.5 wt%TiC | MA + HIP | 0.071 | 11.6 ± 0.3 | [ |
W-5 wt% Y2O3 | MA + SPS | 0.76 | 6.1 ± 0.07 | [ |
W-4Ti/TiN | MA + SPS | 0.62 | 9.1 | [ |
W-2 wt% Ti-2 wt% La | PLS | ≥ 1 | 7.2 ± 0.46 | [ |
W-10 wt% Ti | PLS | - | 4.4 | [ |
W83Ti17 | MA + HEC | 10 - 20 | 5.1 ± 0.1 | [ |
W85Ti15 | MA + SPS | 0.31 | 9.1 | [ |
W-9.7 wt% Ti | soft chemical route + PLS | - | 6.1 ± 0.2 | [ |
W0.5Cr0.5 | PLS | 1.35 | 6.2 ± 0.9 | [ |
W80Ni10Mo10 | PLS | - | 8.58 ± 0.1 | [ |
W-19. 9wt% Mo | thermal decomposition | 4 - 6 | 5.4 ± 0.2 | [ |
Fig. 10. Temperature dependence of the ultimate compressive (solid symbols) or tensile (open symbols) strength of the present NC W80Ti20 alloy and previously reported W [47,48,57] and W alloys [[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68]].
Fig. 11. (a) HAADF-STEM image of the bulk NC W80Ti20 alloy sintered at 1100 °C and compressed at 1000 °C, inset showing the plot for the distribution of grain size. (b-d) representing EDS mapping images of W, Ti, and W plus Ti, respectively.
Fig. 12. (a) Change in the free energy of segregation ΔGseg and (b) variation of normalized GB energy ($\gamma /{{\gamma }_{0}}$)versus the fraction of solute atoms on the GBs (${{X}^{\text{GB}}}$) of W-Ti alloys.
[1] | P. Norajitra, L.V. Boccaccini, A. Gervash, R. Giniyatulin, N. Holstein, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, V. Kuznetsov, J. Nucl. Mater. 367-370 (2007) 1416-1421. |
[2] |
X.C. Li, X. Shu, Y.N. Liu, Y. Yu, F. Gao, G.H. Lu, J. Nucl. Mater. 426 (2012) 31-37.
DOI URL |
[3] |
K. Arshad, W. Guo, J. Wang, M.Y. Zhao, Y. Yuan, Y. Zhang, B. Wang, Z.J. Zhou, G.H. Lu, Int. J. Refract. Met. Hard Mater. 50 (2015) 59-64.
DOI URL |
[4] |
W.Y. Li, Y. Zhang, H.B. Zhou, S. Jin, G.H. Lu, Nucl. Instrum. Methods B 269 (2011) 1731-1734.
DOI URL |
[5] |
C. Garcia-Rosales, J. Nucl. Mater. 211 (1994) 202-214.
DOI URL |
[6] |
Q. Yang, H. Fan, W. Ni, L. Liu, T. Berthold, G. Benstetter, D. Liu, Y. Wang, Acta Mater. 92 (2015) 178-188.
DOI URL |
[7] |
Q. Wei, H. Zhang, B. Schuster, K. Ramesh, R. Valiev, L. Kecskes, R. Dowding, L. Magness, K. Cho, Acta Mater. 54 (2006) 4079-4089.
DOI URL |
[8] |
L. Chen, L.Q. Li, H.R. Gong, J.L. Fan, W. Li, Mater. Lett. 241 (2019) 27-30.
DOI |
[9] |
Z. Chen, L.L. Niu, Z. Wang, L. Tian, L. Kecskes, K. Zhu, Q. Wei, Acta Mater. 147 (2018) 100-112.
DOI URL |
[10] |
O. El-Atwani, E. Esquivel, E. Aydogan, E. Martinez, J.K. Baldwin, M. Li, B.P. Uberuaga, S.A. Maloy, Acta Mater. 165 (2019) 118-128.
DOI |
[11] |
O. El-Atwani, K. Hattar, J.A. Hinks, G. Greaves, S.S. Harilal, A. Hassanein, J. Nucl. Mater. 458 (2015) 216-223.
DOI URL |
[12] |
T.D. Shen, Nucl. Instrum. Methods B 266 (2008) 921-925.
DOI URL |
[13] |
X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, M. Nastasi, Prog. Mater. Sci. 96 (2018) 217-321.
DOI URL |
[14] |
C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, J. Mater. Sci. 43 (2008) 7264-7272.
DOI URL |
[15] |
W. Liu, Y. Ji, P. Tan, H. Zang, C. He, D. Yun, C. Zhang, Z. Yang, Materials 9 (2016) 105.
DOI URL |
[16] | C.S. Smith, Trans. AIME 175 (1948) 15-51. |
[17] |
R. Liu, Y. Zhou, T. Hao, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, J. Nucl. Mater. 424 (2012) 171-175.
DOI URL |
[18] |
Z. Zhou, J. Tan, D. Qua, G. Pintsuk, M. Rodig, J. Linke, J. Nucl. Mater. 431 (2012) 202-205.
DOI URL |
[19] |
Y. Kim, K.H. Lee, E.P. Kim, D.I. Cheong, H.S. Hyung, Int. J. Refract. Met. Hard Mater. 27 (2009) 842-846.
DOI URL |
[20] |
L. Veleva, R. Schäublin, T. Plocinski, M. Walter, N. Baluc, Fusion Eng. Des. 86 (2011) 2450-2453.
DOI URL |
[21] |
M. Zhao, Z. Zhou, Q. Ding, M. Zhong, J. Tan, Mater. Sci. Eng. A 618 (2014) 572-577.
DOI URL |
[22] | C. Suryanarayana, N. Al-Aqeeli, Prog.Mater.Sci. 58(2013)383-502. |
[23] |
A. Patra, R. Sahoo, S. Karak, S. Sahoo, Int. J. Refract. Met. Hard Mater. 70 (2018) 134-154.
DOI URL |
[24] |
L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Eng. Des. 84 (2009) 1920-1924.
DOI URL |
[25] |
C.-.L. Chen, Y. Zeng, Fusion Eng. Des. 113 (2016) 30-36.
DOI URL |
[26] |
T. Chookajorn, M. Park, C.A. Schuh, J. Mater. Res. 30 (2015) 151-163.
DOI URL |
[27] |
K. Huang, L.M. Luo, X. Zan, Q. Xu, D.G. Liu, X.Y. Zhu, J.G. Cheng, Y.C. Wu, J. Nucl. Mater. 501 (2018) 181-188.
DOI URL |
[28] | W.M. Haynes, D.R. Lide, T.J. Bruno, in: CRC Handbook of Chemistry and Physics, 97th ed., CRC Press, Taloy & Francis Group, Boca Raton, FL, 2017, pp. 5-42. |
[29] |
J. Weissmüller, Nanostructured Mater. 3 (1993) 261-272.
DOI URL |
[30] |
J. Weissmüller, J. Mater. Res. 9 (1994) 4-7.
DOI URL |
[31] |
R. Kirchheim, Acta Mater. 50 (2002) 413-419.
DOI URL |
[32] |
T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337 (2012) 951-954.
DOI PMID |
[33] |
W. Dai, S. Liang, Y. Luo, Q. Yang, Int. J. Refract. Met. Hard Mater. 50 (2015) 240-246.
DOI URL |
[34] |
L.J. Kecskes, I.W. Hall, J. Mater. Process. Technol. 94 (1999) 247-260.
DOI URL |
[35] |
S. Wang, L. Luo, J. Shi, X. Zan, X. Zhu, G. Luo, Y. Wu, Powder Technol. 302 (2016) 1-7.
DOI URL |
[36] |
P.K. Sahoo, S.K. Srivastava, S.S.K. Kamal, L. Durai, Int. J. Refract. Met. Hard Mater. 51 (2015) 282-288.
DOI URL |
[37] | S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, S.K. Pabi, Int. J. Refract. Met.Hard Mater. 36 (2013) 191-203. |
[38] |
A. Patra, M. Meraj, S. Pal, N. Yedla, S.K. Karak, Int. J. Refract. Met. Hard Mater. 58 (2016) 57-67.
DOI URL |
[39] |
P.K. Sahoo, S.K. Srivastava, S.S.K. Kamal, L. Durai, Int. J. Refract. Met. Hard Mater. 51 (2015) 124-129.
DOI URL |
[40] |
G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22-31.
DOI URL |
[41] |
H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[42] |
G.K. Williamson, R.E. Smallman, Philos. Mag. 1 (1956) 34-46.
DOI URL |
[43] | R.G. Coltters, Mater. Sci. Eng. 76 (1985) 1-50. |
[44] | A. Guinier, in: X-ray Diffraction, Freeman, San Francisco, CA, 1963, p. 124. |
[45] | J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57 (1945) 160-177. |
[46] | T.B. Massalski, in: Binary Alloy Phase Diagrams, 2, American Society for Metals, Metals Park, OH, 1986, pp. 2136-2137. |
[47] |
T. Shen, Y. Dai, Y. Lee, J. Nucl. Mater. 468 (2016) 348-354.
DOI URL |
[48] |
Z.M. Xie, T. Zhang, R. Liu, Q.F. Fang, S. Miao, X.P. Wang, C.S. Liu, Int. J. Refract. Met. Hard Mater. 51 (2015) 180-187.
DOI URL |
[49] |
H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, J. Nucl. Mater. 377 (2008) 34-40.
DOI URL |
[50] | C. Liu, Q. Guo, Y. Yamauchi, H.R. Alamri, Z.A. Alothman, M.S.A. Hossain, Y. Liu, J. Int. J. Refract. Met. Hard Mater. 69 (2017) 266-272. |
[51] |
S. Wang, L. Luo, M. Zhao, X. Zan, X. Zhu, G. Luo, Y. Wu, Powder Technol. 294 (2016) 301-306.
DOI URL |
[52] |
L.J. Kecskes, K.C. Cho, R.J. Dowding, B.E. Schuster, R.Z. Valiev, Q. Wei, Mater. Sci. Eng. A 467 (2007) 33-43.
DOI URL |
[53] | F. Xiao, Q. Miao, S. Wei, T. Barriere, G. Cheng, S. Zuo, L. Xu, J. Alloys Compd. 824 (2020) 153894. |
[54] |
C.J. Wang, L.Q. Zhang, S.Z. Wei, K.M. Pan, X.C. Wu, Q.K. Li, Mater. Sci. Eng. A 744 (2019) 79-85.
DOI URL |
[55] |
C.J. Wang, L.Q. Zhang, S.Z. Wei, K.M. Pan, X.C. Wu, Q.K. Li, Int. J. Refract. Met. Hard Mater. 79 (2019) 79-89.
DOI URL |
[56] |
Z. Li, L.J. Xu, S.Z. Wei, C. Chen, F.N. Xiao, J. Alloy Compd. 769 (2018) 694-705.
DOI URL |
[57] | M. Scapin, C. Fichera, F. Carra, L. Peroni, EPJ Web Conf. 94 (2015) 01021. |
[58] | Q. Zhang, S. Liang, L. Zhuo, J. Mater. Res. Technol. JMRT 8 (2019) 1486-1496. |
[59] |
Q. Zhang, S. Liang, L. Zhuo, Mater. Sci. Technol. 33 (2017) 2071-2077.
DOI URL |
[60] |
J. Das, G.A. Rao, S.K. Pabi, M. Sankaranarayana, B. Sarma, Mater. Sci. Eng. A 528 (2011) 6235-6247.
DOI URL |
[61] |
Y. Li, K. Hu, X. Li, X. Ai, S. Qu, Mater. Sci. Eng. A 573 (2013) 245-252.
DOI URL |
[62] |
Y.K. Wang, S. Miao, Z.M. Xie, R. Liu, T. Zhang, Q.F. Fang, T. Hao, X.P. Wang, C.S. Liu, X. Liu, L.H. Cai, J. Nucl. Mater. 492 (2017) 260-268.
DOI URL |
[63] |
Z.M. Xie, R. Liu, S. Miao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, J. Nucl. Mater. 464 (2015) 193-199.
DOI URL |
[64] |
S. Miao, Z.M. Xie, X.D. Yang, R. Liu, R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, X. Liu, Y.Y. Lian, Int. J. Refract. Met. Hard Mater. 56 (2016) 8-17.
DOI URL |
[65] | S. Miao, Z.M. Xie, L.F. Zeng, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Nucl. Mater. Energy 13 (2017) 12-20. |
[66] |
R. Liu, Z.M. Xie, Q.F. Fang, T. Zhang, X.P. Wang, T. Hao, C.S. Liu, Y. Dai, J. Alloy Compd. 657 (2016) 73-80.
DOI URL |
[67] |
S. Miao, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, X. Liu, Y.Y. Lian, Mater. Sci. Eng. A 671 (2016) 87-95.
DOI URL |
[68] |
Z.M. Xie, R. Liu, T. Zhang, Q.F. Fang, C.S. Liu, X. Liu, G.N. Luo, Mater. Des. 107 (2016) 144-152.
DOI URL |
[69] |
P. Wynblatt, R. Ku, Surf. Sci. 65 (1977) 511-531.
DOI URL |
[70] |
P. Wynblatt, D. Chatain, Metall. Mater. Trans. A 37 (2006) 2595-2620.
DOI URL |
[71] | M.A. Atwater, K.A. Darling, A Visual Library of Stability in Binary Metallic Sys- tems: The Stabilization of Nanocrystalline Grain Size by Solute Addition: Part 1, Army Research Laboratory, Aberdeen Proving Ground 20015, (2012), ARL-TR- 6007. |
[72] |
K. Darling, M. Tschopp, B. VanLeeuwen, M. Atwater, Z. Liu, Comput. Mater. Sci. 84 (2014) 255-266.
DOI URL |
[73] | W. Liu, Y. Liu, Y. Cheng, L. Chen, L. Yu, X. Yi, H. Duan, Phys. Rev. Lett. 124 (2020) 235501. |
[74] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61 (2016) 495-512.
DOI URL |
[75] | R.W. Chan, P. Haasen, Physical Metallurgy, 4th ed., Elsevier Science B.V., Ams- terdam, 1996. |
[76] | J.R. Davis, Metals Handbook Desk Edition, 2nd ed., ASM International, 1998. |
[77] | A.H. Chokshi, Physics 210 (2018) 152-161. |
[78] | W.A. Rachinger, J. Inst. Met. 81 (1952) 33-41. |
[79] |
T.G. Langdon, Acta Metall. Mater. 42 (1994) 2437-2443.
DOI URL |
[80] |
E.F. Dudarev, G.P. Pochivalova, Yu.R. Kolobov, E.V. Naydenkin, O.A. Kashin, Mater. Sci. Eng. A 503 (2009) 58-61.
DOI URL |
[81] |
A.K. Srivastav, M. Sankaranarayana, B.S. Murty, Metall. Mater. Trans. A 42 (2011) 3863-3866.
DOI URL |
[1] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[2] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[4] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
[5] | Keqiang Zhang, Qiaoyu Meng, Xueqin Zhang, Zhaoliang Qu, Rujie He. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography [J]. J. Mater. Sci. Technol., 2022, 118(0): 144-157. |
[6] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
[7] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[8] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
[9] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[10] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[11] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[12] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[13] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[14] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[15] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||