J. Mater. Sci. Technol. ›› 2022, Vol. 122: 68-76.DOI: 10.1016/j.jmst.2022.02.008
• Research Article • Previous Articles Next Articles
J. Christudasjustusa, C.S. Witharamagea, Ganesh Walunjb, T. Borkarb, R.K. Guptaa,*()
Received:
2021-11-28
Revised:
2022-01-23
Accepted:
2022-02-09
Published:
2022-09-20
Online:
2022-09-05
Contact:
R.K. Gupta
About author:
* E-mail address: rkgupta2@ncsu.edu (R.K. Gupta).J. Christudasjustus, C.S. Witharamage, Ganesh Walunj, T. Borkar, R.K. Gupta. The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling[J]. J. Mater. Sci. Technol., 2022, 122: 68-76.
Fig. 1. SEM-SE images of high-energy ball-milled powder of (a) Al-2V, (b) Al-5V, and (c) Al-10V alloys with the particle size distribution graph at the bottom.
Alloy | Particle size (μm) | Solid solubility (at.%) | Grain size (nm) | Lattice parameter (Å) |
---|---|---|---|---|
Al-2V CC | 462±154 | 1.8 | 33.6 | 4.0346 |
Al-5V CC | 32±15 | 4.0 | 19.7 | 4.0176 |
Al-10 VCC | 20±7 | 5.4 | 12.3 | 4.0066 |
Table 1. Values for different parameters obtained after HEBM and subsequently consolidated by cold compaction (CC).
Alloy | Particle size (μm) | Solid solubility (at.%) | Grain size (nm) | Lattice parameter (Å) |
---|---|---|---|---|
Al-2V CC | 462±154 | 1.8 | 33.6 | 4.0346 |
Al-5V CC | 32±15 | 4.0 | 19.7 | 4.0176 |
Al-10 VCC | 20±7 | 5.4 | 12.3 | 4.0066 |
Fig. 2. XRD profiles of (a) Al-2V, (b) Al-5V, and (c) Al-10V showing the shift in peaks and formation of intermetallic as a function of SPS temperature. The dotted lines represent the position of the peak for pure Al and Al3V for reference to observe the peak shift.
Fig. 3. (a) Grain size, and (b) solid solubility of V in Al as a function of SPS temperature. Data for the cold compacted alloy is alloy is also included for comparison.
Fig. 4. BSE images of Al-2V (a-d), Al-5V (e-h), and Al-10V (i-l) after high-energy ball milling and consolidation at room temperature (CC) and SPS at 200, 250, 300, and 400 °C, respectively. 3 GPa pressure was applied for cold compaction. 1 GPa pressure was used for SPS at 200, 250, and 300 °C, while 600 MPa was used at 400 °C. High magnification images are shown as an inset on the top-right corner. The dark phase, bright steak-type phase, inter-particle boundaries, and inter-particle pores are indicated by yellow, purple, green, and orange arrows, respectively. Unalloyed V particles and abraded stainless steel particles are denoted by the dark red dotted circle and cyan arrow, respectively.
Fig. 5. EDXS area maps of Al and V for Al-10V SPSed at 400 °C. Red dotted lines show the V-lean phase; green dotted lines indicate the segregation of V (V-rich phase) along the inter-particle boundary.
Fig. 7. (a) STEM-BF image of Al-10V alloy (SPSed at 400 °C) showing regions with fine grains (and V-rich) and coarse grains (V-lean). (b) High-resolution HAADF image and EDXS area maps for V, Al, and O. The yellow circles in V-EDXS area maps represent the V-rich phase along the V-rich and V-lean interface, (c) HAADF-STEM image showing the fine bright particles of Al3V at the vicinity of the V-lean phase, (d) HAADF-STEM image showing the combination of bright particles and network structure of V (e) HAADF-STEM image taken far from the V-lean phase (i.e., close to particle center) showing the network structure of V.
Alloy | Sintering temp. ( °C) | Indent position | Hardness (GPa) | Elastic modulus (GPa) |
---|---|---|---|---|
Al-2V | 200 | Matrix | 2.43±0.11 | 88.14±2.79 |
Empty Cell | 250 | Matrix | 2.40±0.06 | 87.26±1.85 |
Empty Cell | 300 | Matrix | 2.11±0.14 | 86.68±2.72 |
Empty Cell | 400 | Matrix | 1.94±0.04 | 82.03±2.48 |
Al-5V | 200 | Matrix | 5.21±0.36 | 96.21±2.47 |
Empty Cell | 250 | Matrix | 4.17±0.16 | 94.14±2.61 |
Empty Cell | V-lean phase | 3.99±0.04 | 87.10±1.65 | |
Empty Cell | 300 | Matrix | 3.17±0.29 | 91.96±1.79 |
Empty Cell | V-lean phase | 2.82±0.19 | 85.97±1.26 | |
Empty Cell | 400 | Matrix | 2.35±0.33 | 88.11±2.55 |
Empty Cell | V-lean phase | 2.15±0.40 | 84.45±1.82 | |
Empty Cell | V-rich phase | 2.85±0.25 | 89.87±1.56 | |
Al-10V | 200 | Matrix | 6.24±0.23 | 108.53±3.62 |
Empty Cell | 250 | Matrix | 5.56±0.24 | 104.54±3.59 |
Empty Cell | 300 | Matrix | 4.73±0.18 | 100.98±2.10 |
Empty Cell | V-lean phase | 2.76±0.23 | 87.60±1.26 | |
Empty Cell | 400 | Matrix | 3.09±0.44 | 98.01±3.56 |
Empty Cell | V-lean phase | 2.61±0.40 | 87.01±2.98 | |
Empty Cell | V-rich phase | 4.24±0.62 | 111.72±4.66 |
Table 2. Hardness and elastic modulus of Al-xV obtained from nanoindentation at various region for different sintering temperatures.
Alloy | Sintering temp. ( °C) | Indent position | Hardness (GPa) | Elastic modulus (GPa) |
---|---|---|---|---|
Al-2V | 200 | Matrix | 2.43±0.11 | 88.14±2.79 |
Empty Cell | 250 | Matrix | 2.40±0.06 | 87.26±1.85 |
Empty Cell | 300 | Matrix | 2.11±0.14 | 86.68±2.72 |
Empty Cell | 400 | Matrix | 1.94±0.04 | 82.03±2.48 |
Al-5V | 200 | Matrix | 5.21±0.36 | 96.21±2.47 |
Empty Cell | 250 | Matrix | 4.17±0.16 | 94.14±2.61 |
Empty Cell | V-lean phase | 3.99±0.04 | 87.10±1.65 | |
Empty Cell | 300 | Matrix | 3.17±0.29 | 91.96±1.79 |
Empty Cell | V-lean phase | 2.82±0.19 | 85.97±1.26 | |
Empty Cell | 400 | Matrix | 2.35±0.33 | 88.11±2.55 |
Empty Cell | V-lean phase | 2.15±0.40 | 84.45±1.82 | |
Empty Cell | V-rich phase | 2.85±0.25 | 89.87±1.56 | |
Al-10V | 200 | Matrix | 6.24±0.23 | 108.53±3.62 |
Empty Cell | 250 | Matrix | 5.56±0.24 | 104.54±3.59 |
Empty Cell | 300 | Matrix | 4.73±0.18 | 100.98±2.10 |
Empty Cell | V-lean phase | 2.76±0.23 | 87.60±1.26 | |
Empty Cell | 400 | Matrix | 3.09±0.44 | 98.01±3.56 |
Empty Cell | V-lean phase | 2.61±0.40 | 87.01±2.98 | |
Empty Cell | V-rich phase | 4.24±0.62 | 111.72±4.66 |
Commercial Alloy | Hardness (GPa) | Elastic Modulus (GPa) |
---|---|---|
Pure Al | 0.60±0.12 | 71.09±4.63 |
AA2024-T3 | 2.00±0.12 | 76.06±2.91 |
AA5083-H116 | 1.31±0.04 | 75.34±1.36 |
AA7075-T651 | 2.23±0.13 | 72.28±1.98 |
Table 3. Hardness and elastic modulus of commercial Al alloys obtained from nanoindentation.
Commercial Alloy | Hardness (GPa) | Elastic Modulus (GPa) |
---|---|---|
Pure Al | 0.60±0.12 | 71.09±4.63 |
AA2024-T3 | 2.00±0.12 | 76.06±2.91 |
AA5083-H116 | 1.31±0.04 | 75.34±1.36 |
AA7075-T651 | 2.23±0.13 | 72.28±1.98 |
Fig. 8. Schematic diagram to illustrate the consolidation of HEBM powder particles and the microstructural evolution occurring during the SPS process.
[1] |
M. Nakai, T. Eto, Mater. Sci. Eng. A 285 (2000) 62-68.
DOI URL |
[2] |
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. de Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280 (2000) 37-49.
DOI URL |
[3] | R.K. Gupta, A. Deschamps, M.K. Cavanaugh, S.P. Lynch, N. Birbilis, J. Elec- trochem. Soc. 159 (2012) C492-C502. |
[4] | K.D. Ralston, N. Birbilis, M. Weyland, C.R. Hutchinson, Acta Mater 58 (2010) 5941-5948. |
[5] | J.R. Davis,Corrosion of Aluminum and Aluminum Alloys, ASM International, 1999. |
[6] |
R.K. Gupta, D. Fabijanic, R. Zhang, N. Birbilis, Corros. Sci. 98 (2015) 643-650.
DOI URL |
[7] |
J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta, Mater. Res. Lett. 6 (2018) 79-83.
DOI URL |
[8] | R.K. Gupta, B.S. Murty, N. Birbilis, An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys, Springer, 2017. |
[9] | L. Esteves, J. Christudasjustus, S.P. O’Brien, C.S. Witharamage, A. A. Darwish, G. Walunj, P. Stack, T. Borkar, R.E. Akans, R.K. Gupta, Corros. Sci. 186 (2021) 109465. |
[10] | C.S. Witharamage, J. Christudasjustus, J. Smith, W. Gao, R.K. Gupta,Npj Mate- rials Degradation 6 (2022) 1-9. |
[11] | J. Esquivel, R.K. Gupta, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 333-341. |
[12] |
P.M. Natishan, E. McCafferty, G.K. Hubler, J. Electrochem. Soc. 135 (1988) 321-327.
DOI URL |
[13] | S. Venkatraman, M.R. Nair, D.C. Kothari, K.B. Lal, R. Raman, Nucl. Instrum. Methods Phys. Res. 19 (1987) 241-246. |
[14] | G.S. Franke, X.B. Chen, R.K. Gupta, S. Kandasamy, N. Birbilis, J. Electrochem. Soc. 161 (2014) C195. |
[15] | P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159-172. |
[16] | G.S. Frankel, M.A. Russak, C. v Jahnes, M. Mirzamaani, V.A. Brusic, J. Elec- trochem. Soc. 136 (1989) 1243-1244. |
[17] | T. Tsuda, C.L. Hussey, G.R. Stafford, J. Electrochem. Soc. 151 (2004) C379-C384. |
[18] |
T. Tsuda, C.L. Hussey, J. Min. Metall. 39 (2003) 3-22.
DOI URL |
[19] |
M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar, Corros. Sci. 51 (2009) 3064-3067.
DOI URL |
[20] | D. Song, A. bin Ma, J. hua Jiang, P. hua Lin, D. hui Yang, Trans. Nonferr. Metals Soc. China (Engl. Ed.) 19 (2009) 1065-1070. |
[21] |
W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, N. Gao, M.J. Starink, Mater. Des. 135 (2017) 366-376.
DOI URL |
[22] |
K.M. Youssef, R.O. Scattergood, K.L. Murty, C.C. Koch, Scr. Mater. 54 (2006) 251-256.
DOI URL |
[23] |
O.N. Senkov, F.H. Froes, V.v. Stolyarov, R.Z. Valiev, J. Liu, Nanostruct. Mater. 10 (1998) 691-698.
DOI URL |
[24] | M.U.F. Khan, A. Patil, J. Christudasjustus, T. Borkar, R.K. Gupta, J. Magnes. Alloy. 8 (2020) 319-328. |
[25] |
T.T. Sasaki, T. Ohkubo, K. Hono, Acta Mater. 57 (2009) 3529-3538.
DOI URL |
[26] |
J.A. Rodríguez, J.M. Gallardo, E.J. Herrera, J. Mater. Sci. 32 (1997) 3535-3539.
DOI URL |
[27] | V.L. Tellkamp, E.J. Lavernia, A. Melmed Metall. Mater. Trans. A 32 (2001) 2335-2343. |
[28] |
J. Xu, R. Li, Q. Li, Metall. Mater. Trans. A 52 (2021) 1077-1094.
DOI URL |
[29] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[30] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[31] |
J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li, J. Mater. Sci. 54 (2019) 14561-14576.
DOI URL |
[32] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[33] | Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48. |
[34] |
J. Esquivel, M.G. Wachowiak, S.P. O’Brien, R.K. Gupta, J. Alloy. Compd. 744 (2018) 651-657.
DOI URL |
[35] |
J. Besson, M. Abouaf, Acta Metall. Mater. 39 (1991) 2225-2234.
DOI URL |
[36] | H.V. Atkinson, S. Davies, Metall. Mater. Trans. A 31 (2000) 2981-3000. |
[37] |
G. Walunj, A. Bearden, A. Patil, T. Larimian, J. Christudasjustus, R.K. Gupta, T. Borkar, Materials 13 (2020) 5306 Basel.
DOI URL |
[38] |
J. Ye, L. Ajdelsztajn, J.M. Schoenung, Metall. Mater. Trans. A 37 (2006) 2569-2579.
DOI URL |
[39] | L. Esteves, C.S. Witharamage, J. Christudasjustus, G. Walunj, S.P. O’Brien, S. Ryu, T. Borkar, R.E. Akans, R.K. Gupta, J. Alloy. Compd. 857 (2021) 158268. |
[40] |
J. Trapp, B. Kieback, Powder Metall. 62 (2019) 297-306.
DOI URL |
[41] |
J. Esquivel, R.K. Gupta, J. Alloy. Compd. 760 (2018) 63-70.
DOI URL |
[42] |
C.S. Witharamage, J. Christudasjustus, R.K. Gupta, J. Mater. Eng. Perform. 30 (2021) 3144-3158.
DOI URL |
[43] | B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Com- pany, Inc., Boston, 1956. |
[44] |
S.P. O’Brien, J. Christudasjustus, L. Esteves, S. Vijayan, J.R. Jinschek, N. Birbilis, R.K. Gupta, NPJ Mater. Degrad. 5 (2021) 1-10.
DOI URL |
[45] | T. Uesugi, K. Higashi, Comput. Mater. Sci. 67 (2013) 1-10. |
[46] |
D. Mukhopadhyay, C. Suryanarayana, F. Froes, Metall. Mater. Trans. A 26 (1995) 1939-1946.
DOI URL |
[47] |
B. Srinivasarao, C. Suryanarayana, K. Oh-ishi, K. Hono, Mater. Sci. Eng. A 518 (2009) 100-107.
DOI URL |
[48] |
A. Calka, W. Kaczmarek, J.S. Williams, J. Mater. Sci. 28 (1993) 15-18.
DOI URL |
[49] |
J.H. Choi, K. Il Moon, J.K. Kim, Y.M. Oh, J.H. Suh, S.J. Kim, J. Alloy. Compd. 315 (2001) 178-186.
DOI URL |
[50] |
G.J. Fan, W.N. Gao, M.X. Quan, Z.Q. Hu, Mater. Lett. 23 (1995) 33-37.
DOI URL |
[51] |
A. Jahangiri, S.P.H. Marashi, M. Mohammadaliha, V. Ashofte, J. Mater, Process. Technol. 245 (2017) 1-6.
DOI URL |
[52] | N. Sharma, S.N. Alam, B.C. Ray, in: Spark Plasma Sintering of Materials, Springer International Publishing, Cham, 2019, pp. 21-59. |
[1] | Xingjie Jia, Bojun Zhang, Wei Zhang, Yaqiang Dong, Jiawei Li, Aina He, Run-Wei Li. Direct synthesis of Fe-Si-B-C-Cu nanocrystalline alloys with superior soft magnetic properties and ductile by melt-spinning [J]. J. Mater. Sci. Technol., 2022, 108(0): 186-195. |
[2] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[3] | Siyuan Wei, Yakai Zhao, Jae-il Jang, Upadrasta Ramamurty. Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 253-264. |
[4] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[5] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[6] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[7] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
[8] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[9] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[10] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[11] | Guangpeng Sun, Xing Feng, Xue Wu, Sitong Zhang, Bin Wen. Is hardness constant in covalent materials? [J]. J. Mater. Sci. Technol., 2022, 114(0): 215-221. |
[12] | H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
[13] | Bin Zhu, Nathanael Leung, Winfried Kockelmann, Andrew J. London, Michael Gorley, Mark J. Whiting, Yiqiang Wang, Tan Sui. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging [J]. J. Mater. Sci. Technol., 2022, 114(0): 249-260. |
[14] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[15] | Iva Milisavljevic, Guangran Zhang, Yiquan Wu. Solid-state single-crystal growth of YAG and Nd: YAG by spark plasma sintering [J]. J. Mater. Sci. Technol., 2022, 106(0): 118-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||