J. Mater. Sci. Technol. ›› 2022, Vol. 114: 249-260.DOI: 10.1016/j.jmst.2021.12.004
• Research Article • Previous Articles
Bin Zhua, Nathanael Leunga, Winfried Kockelmannb, Andrew J. Londonc, Michael Gorleyc, Mark J. Whitinga, Yiqiang Wangc,*(), Tan Suia,*(
)
Received:
2021-10-20
Revised:
2021-12-02
Accepted:
2021-12-02
Published:
2022-07-01
Online:
2022-01-15
Contact:
Yiqiang Wang,Tan Sui
About author:
t.sui@surrey.ac.uk (T. Sui).Bin Zhu, Nathanael Leung, Winfried Kockelmann, Andrew J. London, Michael Gorley, Mark J. Whiting, Yiqiang Wang, Tan Sui. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging[J]. J. Mater. Sci. Technol., 2022, 114: 249-260.
Fig. 1. (a) Optical micrographs of an as-welded sample (top left) and a comb-shaped sample (bottom left). The black diamond-shaped spots (top left) indicate the position where the neutron diffraction data were acquired, and the red and black dash rectangles (top left) show the position of the residual strain maps using NBEI. (b) Optical microscopy image of distinct FZ and HAZ regions of the top view of the as-welded sample. (c) Table for introducing the sample status and experimental arrangements.
Fig. 2. (a) A schematic of the neutron diffraction experiment setup and data acquisition position. Three through-thickness line-scans at different distances to beam incident surface were performed. The data was acquired at both filled- and unfilled-spots position for the as-welded sample, while only at filled-spot positions for the PWHT sample. The diffraction data was recorded by two detector banks, labelled ‘axial’ and ‘radial’, yielding the strains along TD and ND. In order to measure residual stress along LD, the sample was rotated 90° around ND, and three line-scans were performed at the same data acquisition position. (b) Lattice spacings were extracted by peak fitting. (c) Neutron Bragg edge imaging (NBEI) experiment setup. The red and black dashed rectangles illustrate the two mapped areas that cover the welding affected region. The two images on the left are the transmission data recorded and saved by the detector. (d) An example of Bragg edge fitting for the {110} crystal plane. The Bragg edge position is obtained as one of five fitting parameters: edge position, edge height, edge width, edge pedestal and edge asymmetry (equipment parameter).
Fig. 3. Microstructure of as-welded sample. (a) Microstructure at FZ, HAZ and BM regions acquired by SEM. The lath-like bainite, martensite and precipitate are labelled by B, M and P, respectively. (b) EBSD maps at the FZ, HAZ and BM regions. (c) Corresponding PF at the FZ, HAZ and BM regions, where the X direction is the TD, the Y direction the LD and the map normals are the ND.
Fig. 4. Microstructure of the PWHT sample. (a) Microstructure at FZ and HAZ regions after PWHT acquired by the SEM. The tempered martensite and precipitate are labelled as TM and P, respectively. (b) EBSD maps of PWHT sample at FZ and HAZ regions. (c) PF derived from relative EBSD maps at FZ and HAZ regions where the coordinate of X is TD, Y is LD, and the centre is ND.
Fig. 5. Residual stress of σxx, σyy and σzz components of as-welded sample derived from neutron diffraction by a single-peak fitting approach. (a) The through-thickness residual stress distribution extracted at three different distances to beam incident surface. (b) The residual stress on the segment plane.
Fig. 6. Residual stress of σxx, σyy and σzz components of the PWHT sample derived from neutron diffraction by single-peak analyses. (a) The through-thickness residual stress distribution extracted at three different distances to beam incident surface. (b) The residual stress on the segment plane.
Fig. 7. Residual strain maps and profiles of the as-welded sample measured by NBEI. (a1), (a2), (a3)and (a4) Strain maps along ND calculated from lattice spacings of {211} and {110} planes. (b1) and (b2) Comparison of residual strain distribution of {211} and {110} crystal planes which are measured by NBEI and neutron diffraction, respectively. (c1) and (c2) Comparison of Bragg edges of {211} and {110} crystal planes in the FZ and BM regions, respectively.
Fig. 8. Residual strain maps and strain profiles of the PWHT sample measured by NBEI. (a1), (a2), (a3)and (a4) Strain maps along ND (b1) and (b2) Comparison of residual strain distribution of {211} and {110} crystal planes which are measured by NBEI and neutron diffraction, respectively. (c1) and (c2) Comparison of Bragg edges of {211} and {110} crystal planes in the FZ and BM regions, respectively. The residual strain are plotted in the same way as in Fig. 7.
Fig. 9. (a) Micro-hardness distribution in the as-welded and PWHT samples correlated with the crystal size in the FZ, HAZ and BM. The micro-hardness at the teeth of comb-shaped reference sample is also included, which is labelled as as-welded d0 and PWHT d0. (b) and (c) Load-displacement curves derived from the FZ, HAZ and BM of the as-welded and PWHT samples, respectively. (d) The FWHM distritbution across the welding region of both as-welded and PWHT samples extracted at the thickness of 1.72 mm from the top surface.
[1] |
P. Fernández, A.. Lancha, J. Lapeña, M. Serrano, M. Hernández-Mayoral, J. Nucl. Mater. 307-311 (2002) 495-499.
DOI URL |
[2] |
A. Zeman, L. Debarberis, J. Kočík, V. Slugeň, E. Keilová, J. Nucl. Mater. 362 (2007) 259-267.
DOI URL |
[3] |
S. Wu, J. Zhang, J. Yang, J. Lu, H. Liao, X. Wang, J. Nucl. Mater. 503 (2018) 66-74.
DOI URL |
[4] | X.X. Li, X.X. Li, S. Schönecker, R. Li, J. Zhao, L. Vitos, Understanding the Me- chanical Properties of Reduced Activation Steels, Elsevier Ltd, 2018. |
[5] |
R. Andreani, E. Diegele, R. Laesser, B. Van Der Schaaf, J. Nucl. Mater. 329-333 (2004) 20-30.
DOI URL |
[6] |
R. Lässer, N. Baluc, J.L. Boutard, E. Diegele, S. Dudarev, M. Gasparotto, A. Mös-lang, R. Pippan, B. Riccardi, B. van derSchaaf, Fusion Eng. Des. 82 (2007) 511-520.
DOI URL |
[7] | M. Richardson, M. Gorley, Y. Wang, G. Aiello, G. Pintsuk, E. Gaganidze, M. Ri-chou, J. Henry, R. Vila, M. Rieth,, J.Nucl.Mater. 550(2021)152906. |
[8] |
P. Aubert, F. Tavassoli, M. Rieth, E. Diegele, Y. Poitevin, J. Nucl. Mater. 409 (2011) 156-162.
DOI URL |
[9] |
S. Kirk, W. Suder, K. Keogh, T. Tremethick, A. Loving, Fusion Eng. Des. 136 (2018) 612-616.
DOI URL |
[10] | H. Tanigawa, T. Maruyama, Y. Noguchi, N. Takeda, S. Kakudate, Fusion Eng. Des. 98-99 (2015) 1634-1637. |
[11] |
P. Aubert, F. Tavassoli, M. Rieth, E. Diegele, Y. Poitevin, J. Nucl. Mater. 417 (2011) 43-50.
DOI URL |
[12] |
D.J. Hughes, E. Koukovini-Platia, E.L. Heeley, Fusion Eng. Des. 89 (2014) 104-108.
DOI URL |
[13] |
S. Kumar, A. Kundu, K.A. Venkata, A. Evans, C.E. Truman, J.A. Francis, K. Bhanu-murthy, P.J. Bouchard, G.K. Dey, Mater. Sci. Eng. A 575 (2013) 160-168.
DOI URL |
[14] | G. Lu, D.W. Sokol, Y. Zhang, J.L. Dulaney, Appl. Mater. Today 15 (2019) 171-184. |
[15] |
Y. Poitevin, P. Aubert, E. Diegele, G. de Dinechin, J. Rey, M. Rieth, E. Rigal, A. von derWeth, J.-L. Boutard, F. Tavassoli, J. Nucl. Mater. 417 (2011) 36-42.
DOI URL |
[16] |
L.P. Jones, P. Aubert, V. Avilov, F. Coste, W. Daenner, T. Jokinen, K.R. Nightingale, M. Wykes, Fusion Eng. Des. 69 (2003) 215-220.
DOI URL |
[17] |
Y.Q. Wang, M.W. Spindler, C.E. Truman, D.J. Smith, Mater. Des. 95 (2016) 656-668.
DOI URL |
[18] |
Y.Q. Wang, H.E. Coules, C.E. Truman, D.J. Smith, Int. J. Solids Struct. 135 (2018) 219-232.
DOI URL |
[19] |
J. Ahn, E. He, L. Chen, R.C. Wimpory, J.P. Dear, C.M. Davies, Mater. Des. 115 (2017) 441-457.
DOI URL |
[20] | P. Agrawal, S. Shukla, S. Gupta, P. Agrawal, R.S. Mishra, Appl. Mater. Today 21 (2020) 100853. |
[21] |
D.G. Carr, M.I. Ripley, T.M. Holden, D.W. Brown, S.C. Vogel, Acta Mater. 52 (2004) 4083-4091.
DOI URL |
[22] |
W. Woo, G.B. An, E.J. Kingston, A.T. Dewald, D.J. Smith, M.R. Hill, Acta Mater. 61 (2013) 3564-3574.
DOI URL |
[23] | W. Reimers, in: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, 1997, pp. 461-494. |
[24] |
R. Coppola, O. Asserin, P. Aubert, C. Braham, A. Monnier, M. Valli, E. Diegele, J. Nucl. Mater. 417 (2011) 51-54.
DOI URL |
[25] |
R.S. Ramadhan, A.K. Syed, A.S. Tremsin, W. Kockelmann, R. Dalgliesh, B. Chen, D. Parfitt, M.E. Fitzpatrick, Mater. Des. 143 (2018) 56-64.
DOI URL |
[26] |
C.M. Wensrich, J.N. Hendriks, A. Gregg, M.H. Meylan, V. Luzin, A.S. Tremsin, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 383 (2016) 52-58.
DOI URL |
[27] |
A.S. Tremsin, J.V. Vallerga, J.B. McPhate, O.H.W. Siegmund, R. Raffanti, IEEE Trans. Nucl. Sci. 60 (2013) 578-585.
DOI URL |
[28] | W. Kockelmann, T. Minniti, D.E. Pooley, G. Burca, R. Ramadhan, F.A. Akeroyd, G.D. Howells, C. Moreton-Smith, D.P. Keymer, J. Kelleher, S. Kabra, T.L. Lee, R. Ziesche, A. Reid, G. Vitucci, G. Gorini, D. Micieli, R.G. Agostino, V. For-moso, F. Aliotta, R. Ponterio, S. Trusso, G. Salvato, C. Vasi, F. Grazzi, K. Watan-abe, J.W.L. Lee, A.S. Tremsin, J.B. McPhate, D. Nixon, N. Draper, W. Halcrow, J. Nightingale, J. Imaging 4 (2018) 4030047. |
[29] |
H. Sato, T. Sato, Y. Shiota, T. Kamiyama, A.S. Tremsin, M. Ohnuma, Y. Kiyanagi, Mater. Trans. 56 (2015) 1147-1152.
DOI URL |
[30] | M. Busi, N. Kalentics, M. Morgano, S. Griffiths, A.S. Tremsin, T. Shinohara, R. Logé, C. Leinenbach, M. Strobl, Addit. Manuf. 39 (2021) 101848. |
[31] |
Y. Su, K. Oikawa, T. Shinohara, T. Kai, T. Horino, O. Idohara, Y. Misaka, Y. To-mota, Sci. Rep. 11 (2021) 4155.
DOI URL |
[32] | M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, H. Zimmermann, EUROFER 97 Tensile, Charpy, Creep and Structural Tests, No. FZKA-6911, Forschungszentrum Karlsruhe GmbH Technik und Umwelt. Inst. fuer Materialforschung, Germany, 2003. |
[33] | F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX -Free and Open Source Software Toolbox, Solid State Phenom. 160 (2010) 63-68. |
[34] |
M.R. Daymond, M. Preuss, B. Clausen, Acta Mater. 55 (2007) 3089-3102.
DOI URL |
[35] | E. Oliver, J. Santisteban, J. James, M. Daymond, J. Dann, ENGIN-X user manual, ISIS. Rutherford-Appleton Laboratory, UK, 2004. |
[36] | R.B.V. Dreele, A.C. Larson, General Structure Analysis System (GSAS), Los. Alamos National Laboratory Report LAUR(2004) 86-748. |
[37] | M. Turski, S. Pratihar, L. Edwards, M.R. Daymond, M.E. Fitzpatrick, Mater. Sci. Forum 524-525 (2006) 677-684. |
[38] |
G.S. Pawley, J. Appl. Crystallogr. 14 (1981) 357-361.
DOI URL |
[39] |
T. Gnäupel-Herold, A.A. Creuziger, M. Iadicola, J. Appl. Crystallogr. 45 (2012) 197-206.
DOI URL |
[40] |
T. Minniti, K. Watanabe, G. Burca, D.E. Pooley, W. Kockelmann, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 888 (2018) 184-195.
DOI URL |
[41] | A.S. Tremsin, T.Y. Yau, W. Kockelmann, Strain 52 (2016) 548-558. |
[42] |
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9 (2012) 671-675.
URL PMID |
[43] |
J.R. Santisteban, L. Edwards, A. Steuwer, P.J. Withers, J. Appl. Crystallogr. 34 (2001) 289-297.
DOI URL |
[44] | A. Steuwer, P.J. Withers, J.R. Santisteban, L. Edwards, G. Bruno, M.E. Fitzpatrick, M.R. Daymond, M.W. Johnson, D. Wang, Phys. Status Solidi Appl. Res. 185 (2001) 221-230. |
[45] |
E. Gaganidze, F. Gillemot, I. Szenthe, M. Gorley, M. Rieth, E. Diegele, Fusion Eng. Des. 135 (2018) 9-14.
DOI URL |
[46] | B. Roebuck, E.G. Bennett, A. Dickson, The measurement of uncertainty in grain size distribution. Interlaboratory exercise. Part 1 - Reference Images, Natl. Phys. Lab. CMMT(A) 154 (1999). |
[47] | P. Staron, A. Schreyer, H. Clemens, S. Mayer, Neutrons and Synchrotron Radi- ation in Engineering Materials Science: From Fundamentals to Applications:Second Edition, John Wiley & Sons, 2017. |
[48] |
W. Woo, V.T. Em, B.S. Seong, P. Mikula, G.B. An, J. Mater. Sci. 47 (2012) 5617-5623.
DOI URL |
[49] |
Y.Q. Wang, S. Hossain, S. Kabra, S.Y. Zhang, D.J. Smith, C.E. Truman, J. Mater. Sci. 52 (2017) 7929-7936.
DOI URL PMID |
[50] |
B. Chen, J.N. Hu, Y.Q. Wang, S. Kabra, A.C.F. Cocks, D.J. Smith, P.E.J. Flewitt, J. Mater. Sci. 50 (2015) 5809-5816.
DOI URL |
[51] |
N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35 (2012) 572-588.
DOI URL |
[52] |
H.H. Lai, W. Wu, J. Mater. Res. Technol. 9 (3) (2020) 2717-2726.
DOI URL |
[53] | L. Forest, N. Thomas, L. Cogneau, J. Tosi, J. Vallory, M. Zmitko, Y. Poitevin, M. Soldaini, G.A. Spagnuolo, C. Lacroix, M. Simon-Perret, Fusion Eng. Des. 164 (2021) 112210. |
[54] |
J.S. Robinson, D.A. Tanner, S. Van Petegem, A. Evans, Mater. Sci. Technol. 28 (2012) 420-430.
DOI URL |
[55] |
J. Moon, C.H. Lee, T.H. Lee, M.H. Jang, M.G. Park, H.N. Han, J. Nucl. Mater. 455 (2014) 81-85.
DOI URL |
[56] |
W. Suder, S. Ganguly, S. Williams, A.M. Paradowska, P. Colegrove, Sci. Technol. Weld. Join. 16 (2011) 244-248.
DOI URL |
[57] |
H. Sato, T. Kamiyama, Y. Kiyanagi, Mater. Trans. 52 (2011) 1294-1302.
DOI URL |
[58] |
K. Iwase, H. Sato, S. Harjo, T. Kamiyama, T. Ito, S. Takata, K. Aizawa, Y. Kiyanagi, J. Appl. Crystallogr. 45 (2012) 113-118.
DOI URL |
[59] |
G. Song, J. Lin, J. Bilheux, Q. Xie, L. Santodonato, J. Molaison, H. Skorpenske, A.M. Dos Santos, C. Tulk, K. An, A. Stoica, M. Kirka, R. Dehoff, A. Tremsin, J. Bunn, L. Sochalski-Kolbus, H. Bilheux, J. Imaging 3 (2017) 65.
DOI URL |
[60] |
R. Dakhlaoui, V. Klosek, M.H. Mathon, B. Marini, Acta Mater. 58 (2010) 499-509.
DOI URL |
[61] |
P.J. Withers, M. Preuss, A. Steuwer, J.W.L. Pang, J. Appl. Crystallogr. 40 (2007) 891-904.
DOI URL |
[62] |
Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma, A.M. Beese, Mater. Des. 113 (2017) 169-177.
DOI URL |
[63] |
D.J. Hughes, M.N. James, D.G. Hattingh, P.J. Webster, J. Neutron Res. 11 (2003) 289-293.
DOI URL |
[64] | E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747. |
[65] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[66] | H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, Butter- worth-Heinemann, 2017. |
[67] |
T. Shrestha, I. Charit, G. Potirniche, J. Mater. Eng. Perform. 24 (2015) 4710-4720.
DOI URL |
[68] |
Z.L. Hu, S.J. Yuan, X.S. Wang, G. Liu, H.J. Liu, Scr. Mater. 66 (2012) 427-430.
DOI URL |
[69] |
Y.H. Lee, D. Kwon, Scr. Mater. 49 (2003) 459-465.
DOI URL |
[70] | J. Macchi, S. Gaudez, G. Geandier, J. Teixeira, S. Denis, F. Bonnet, S.Y.P. Allain, Mater. Sci. Eng. A 800 (2021) 140249. |
[1] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[2] | Quanqing Zeng, Kefu Gan, Fei Chen, Dongyao Wang, Songsheng Zeng. Interstitial concentration effects on incipient plasticity and dislocation behaviors of face-centered cubic FeNiCr multicomponent alloys based on nanoindentation [J]. J. Mater. Sci. Technol., 2022, 112(0): 212-221. |
[3] | Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy [J]. J. Mater. Sci. Technol., 2022, 103(0): 165-176. |
[4] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[5] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[6] | Yue Wang, Siyuan Yang, Ting Zhou, Long Hou, Lansong Ba, Yves Fautrelle, Zhongming Ren, Yanyan Zhu, Zongbin Li, Xi Li. Microstructure evolution and mechanical behavior of Ni-rich Ni-Mn-Ga alloys under compressive and tensile stresses [J]. J. Mater. Sci. Technol., 2022, 97(0): 113-122. |
[7] | P. Wang, X. Liu, H. Wang, J. Cao, J. Qi, J. Feng. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti + Sc2(WO4)3 composite filler metal [J]. J. Mater. Sci. Technol., 2022, 108(0): 102-109. |
[8] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[9] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[10] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[11] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[12] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[13] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[14] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[15] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||