J. Mater. Sci. Technol. ›› 2022, Vol. 114: 240-248.DOI: 10.1016/j.jmst.2021.12.006
• Research Article • Previous Articles Next Articles
Changyan Chena, Ting Jianga, Jianhua Houa,b,c,*(), Tingting Zhanga, Geshan Zhangd, Yongcai Zhange, Xiaozhi Wanga,b
Received:
2021-03-02
Revised:
2021-12-11
Accepted:
2021-12-12
Published:
2022-07-01
Online:
2022-01-21
Contact:
Jianhua Hou
About author:
* jhhou@yzu.edu.cn (J. Hou).Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals[J]. J. Mater. Sci. Technol., 2022, 114: 240-248.
Fig. 4. (a) Nitrogen adsorption-desorption isotherms, (b) DFT pore size distribution curves, (c) UV-Vis DRS, (d) plots of (αhv)1/2 vs hv of synthetic BiOCl samples, (e) FTIR spectra, and (f) PL of BiOCl samples..
Fig. 5. (a) RhB photocatalytic degradation curve; (b) RhB degradation reaction pseudo-first-order kinetic relationship diagram; (c) RhB first-order kinetic constant histogram; (d) TC, CIP, and MO photocatalytic degradation curve; (e) TC, CIP, and MO degradation dynamic diagram; (f) TC, CIP, and MO adsorption and degradation histogram.
Fig. 6. (a) ElS of as-prepared samples; (b) PC curves; (c) EPR spectra of BiOCl and BiOCl-TU-T, (d) EPR signals of DMPO-·OH, (e) EPR signals of DMPO-·O2-, (f) free radical capture degradation curve.
[1] |
Y.S. Mao, P.F. Wang, L.N. Li, Z.W. Chen, H.T. Wang, Y. Li, S.H. Zhan, Angew. Chem.-Int. Edit. 59 (2020) 3685-3690.
DOI URL |
[2] |
L.L. Liu, Y.H. Sun, X.Q. Cui, K. Qi, X. He, Q.L. Bao, W.L. Ma, J. Lu, H.Y. Fang, P. Zhang, L.R. Zheng, L.P. Yu, D.J. Singh, Q.H. Xiong, L.J. Zhang, W.T. Zheng, Nat. Commun. 10 (2019) 4472-4481.
DOI URL |
[3] |
J. Liu, S. Guo, H.Z. Wu, X.L. Zhang, J. Li, K. Zhou, J. Mater. Sci. Technol. 85 (2021) 1-10.
DOI URL |
[4] | Y. Zhao, H.L. Wang, H.P. Qi, D.Y. Zhao, X.K. Wang, J. Alloy. Compd. 819 (2020) 153042-153053. |
[5] |
Q.D. Gibson, T.D. Manning, M. Zanella, T.Q. Zhao, P.A.E. Murgatroyd, C.M. Robertson, L.A.H. Jones, F. McBride, R. Cora, F. Raval, B. Slater, J.B. Clar-idge, V.R. Dhanak, M.S. Dyer, J. Alaria, M.J. Rosseinsky, J. Am. Chem. Soc. 142 (2020) 847-856.
DOI URL PMID |
[6] | J.H. Hou, T.T. Zhang, T. Jiang, X.G. Wu, Y.C. Zhang, X.Z. Wang, J. Clean. Prod. 328 (2021) 129651-129660. |
[7] |
L. Sun, D.M. Chen, S.G. Wan, Z.B. Yu, M.L. Li, Chem. Eng. J. 326 (2017) 1030-1039.
DOI URL |
[8] | J.H. Hou, T. Jiang, X.Z. Wang, G.S. Zhang, J.J. Zou, C.B. Cao, J. Clean. Prod. 287 (2021) 125072-125080. |
[9] | Y. Peng, Y.G. Mao, P.F. Kan, J.Y. Liu, Z. Fang, New J. Chem 42 (2018) 16911-16918. |
[10] |
D.P. Mahajan, H.M. Godbole, G.P. Singh, G.G. Shenoy, J. Chem. Sci. 131 (2019) 67-75.
DOI URL |
[11] | X. Ou, X. Liu, W. Liu, W. Rong, J. Li, Z. Lin, Sci.Nano 5 (2018) 2570-2578. |
[12] |
H.W. Huang, K. Xiao, T.R. Zhang, F. Dong, Y.H. Zhang, Appl. Catal. B-Environ. 203 (2017) 879-888.
DOI URL |
[13] |
D.F. Sun, T. Wang, Y.H. Xu, R.X. Li, T. Sato, Mater. Sci. Semicond. Process 31 (2015) 666-677.
DOI URL |
[14] |
C.L. Yu, H.B. He, X.Q. Liu, J.L. Zeng, Z. Liu, Chin. J. Catal. 40 (2019) 1212-1221.
DOI URL |
[15] |
C.Y. Wang, X. Zhang, Y.J. Zhang, J.J. Chen, G.X. Huang, J. Jiang, W.K. Wang, H.Q. Yu, Appl. Catal. B-Environ. 237 (2018) 464-472.
DOI URL |
[16] | H. Zhao, X. Liu, Y.M. Dong, Y.M. Xia, H.J. Wang, Appl. Catal. B-Environ. 256 (2019) 117872-117880. |
[17] | X.M. Gao, K.L. Gao, F. Fu, C.H. Liang, Q.G. Li, J.Q. Liu, L.J. Gao, Y.F. Zhu, Appl. Catal. B-Environ. 265 (2020) 118562-118573. |
[18] | H.H. Liu, C. Yang, J. Huang, J.F. Chen, J.B. Zhong, J.Z. Li, Inorg. Chem. Commun. 113 (2020) 107806-107815. |
[19] | H.J. Dong, M. Xiao, J.M. Li, W. Hu, X. Sun, Y.C. Liu, P.F. Zhang, G.B. Che, C.B. Liu, J. Photochem. Photobiol. A-Chem. 392 (2020) 112369-112377. |
[20] |
K. Xu, L. Wang, H.F. Feng, Z.F. Xu, J.C. Zhuang, Y. Du, F. Pan, W.C. Hao, J. Mater. Sci. Technol. 77 (2021) 217-222.
DOI URL |
[21] |
D.F. Sun, J.P. Li, Z.H. Feng, L. He, B. Zhao, T.G. Wang, R.X. Li, S. Yin, T. Sato, Catal. Commun. 51 (2014) 1-4.
DOI URL |
[22] | Y.W. Cui, J.L. Ma, M.J. Wu, J.Z. Wu, Y. F.Xu, J. Zhang, Q. Liu, G.R. Qian, Sep. Purif. Technol. 254 (2021) 117635-117642. |
[23] |
J. Zhang, Q.F. Han, J.W. Zhu, X. Wang, J. Colloid Interface Sci. 477 (2016) 25-33.
DOI URL |
[24] |
T.Z. Liu, Y.Y. Li, H. Zhang, M. Wang, X.Y. Fei, S.W. Duo, Y. Chen, J. Pan, W. Wang, Appl. Surf. Sci. 357 (2015) 516-529.
DOI URL |
[25] |
J.H. Hou, R. Wei, X.G. Wu, M. Tahir, X.Z. Wang, F.K. Butt, C.B. Cao, Dalton Trans. 47 (2018) 6692-6701.
DOI URL |
[26] |
J.B. Zhong, Y.K. Zhao, L.Y. Ding, H.W. Ji, W.H. Ma, C.C. Chen, J.C. Zhao, Appl. Catal. B-Environ. 241 (2019) 514-520.
DOI URL |
[27] |
J. Di, J.X. Xia, H.M. Li, S.J. Guo, S. Dai, Nano Energy 41 (2017) 172-192.
DOI URL |
[28] | J.H. Hou, D. Dai, R. Wei, X.G. Wu, X.Z. Wang, M. Tahir, ACS Sustain. Chem. Eng. 7 (2019) 16569-16576. |
[29] |
D. Hao, Z.G. Chen, M. Figiela, I. Stepniak, W. Wei, B.J. Ni, J. Mater. Sci. Technol. 77 (2021) 163-168.
DOI URL |
[30] |
Y. Tan, C.Q. Li, Z.M. Sun, C. Liang, S.L. Zheng, J. Colloid Interface Sci. 564 (2020) 143-154.
DOI URL |
[31] |
Y.Y. Sun, G.Y. Li, W.J. Wang, W.Q. Gu, P.K. Wong, T.C. An, J. Environ. Sci. 84 (2019) 69-79.
DOI URL |
[32] |
T. Jiang, J. Jin, J.H. Hou, M. Tahir, F. Idrees, Chemosphere 229 (2019) 426-433.
DOI URL PMID |
[33] |
M. Wang, G.Q. Tan, D. Zhang, B. Li, L. Lv, Y. Wang, H.J. Ren, X.L. Zhang, A. Xia, Y. Liu, Appl. Catal. B-Environ. 254 (2019) 98-112.
DOI URL |
[34] | J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Pang, G.X. Wang, Chem. Eng. J. 401 (2020) 126141-126151. |
[35] |
L.Q. Jing, X. Qin, Y.B. Luan, Y.C. Qu, M.Z. Xie, Appl. Surf. Sci. 258 (2012) 3340-3349.
DOI URL |
[36] |
X.Y. Gao, G.B. Tang, W. Peng, Q. Guo, Y.M. Luo, Chem. Eng. J. 360 (2019) 1320-1329.
DOI URL |
[37] |
C. Li, F. Feng, J. Jian, Y.X. Xu, F. Li, H.Q. Wang, L.C. Jia, J. Mater. Sci. Technol. 79 (2021) 21-28.
DOI URL |
[38] | T.T. Zhuang, Y. Liu, M. Sun, S.L. Jiang, M.W. Zhang, X.C. Wang, Q. Zhang, J. Jiang, S.H. Yu, Angew. Chem.-Int. Edit. 54 (2015) 11495-11500. |
[39] |
Z.F. Li, Z.H. Wu, R.A. He, L. Wan, S.Y. Zhang, J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[40] |
J. Di, J. Xia, M. Ji, L. Xu, S. Yin, Z. Chen, H. Li, J. Mater. Chem. A 4 (2016) 5051-5061.
DOI URL |
[41] |
Q. Qin, Y.N. Guo, D.D. Zhou, Y.X. Yang, Y.H. Guo, Appl. Surf. Sci. 390 (2016) 765-777.
DOI URL |
[42] |
J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Appl. Catal. B-Environ. 181 (2016) 260-269.
DOI URL |
[43] | J. Zhan, G. Li, Y. Yu, L. Zhang, Nat. Commun. 7 (2016) 11480-11488. |
[44] |
J.S. Cheng, C. Wang, Y.F. Cui, Y. Sun, Y. Zuo, J. Mater. Sci. Technol. 30 (2014) 1130-1133.
DOI URL |
[45] |
H. Li, J. Li, Z.H. Ai, F.L. Jia, L.Z. Zhang, Angew Chem.-Int. Edit. 57 (2018) 122-138.
DOI URL |
[1] | Huinan Zhao, Xinyi Guan, Feng Zhang, Yajing Huang, Dehua Xia, Lingling Hu, Xiaoyuan Ji, Ran Yin, Chun He. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. J. Mater. Sci. Technol., 2022, 100(0): 110-119. |
[2] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[3] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[4] | Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites [J]. J. Mater. Sci. Technol., 2022, 102(0): 1-7. |
[5] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[6] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[7] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[8] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[9] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[10] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
[11] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[12] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[13] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[14] | Yuanyuan Liu, Yanmei Zheng, Weijie Zhang, Zhengbin Peng, Hang Xie, YiXuan Wang, Xinli Guo, Ming Zhang, Rui Li, Ying Huang. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation [J]. J. Mater. Sci. Technol., 2021, 95(0): 127-135. |
[15] | Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 95(0): 167-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||