J. Mater. Sci. Technol. ›› 2022, Vol. 96: 94-102.DOI: 10.1016/j.jmst.2021.04.025
• Research Article • Previous Articles Next Articles
Muhammad Ismaila, Umesh Chandb, Chandreswar Mahataa, Jamel Nebhenc, Sungjun Kima,*()
Received:
2020-11-25
Revised:
2021-02-10
Accepted:
2021-04-11
Published:
2022-01-10
Online:
2022-01-05
Contact:
Sungjun Kim
About author:
*E-mail address: sungjun@dongguk.edu (S. Kim).Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing[J]. J. Mater. Sci. Technol., 2022, 96: 94-102.
Fig. 1. (a) Fabrication process, (b) schematic illustration displaying the crossbar array structure, (c) TEM image, and (d) depth profile analysis of the W/TiO2/HfO2/TaN memristive device.
Fig. 2. XPS spectra of the W/TiO2/HfO2/TaN memristive device, (a) Ti 2p, and (b) O 1 s core level spectrum from the TiO2 layer, (c) Hf 4f, and (d) O 1 s core level spectrum from the HfO2 layer.
Fig. 3. (a, b) Typical bipolar switching characteristics of W/HfO2/TaN and W/TiO2/HfO2/TaN memristive devices for 50 consecutive cycles in DC double logarithmic modes. Left insets of (a-b) show I-V switching curves of the forming process of W/HfO2/TaN and W/TiO2/HfO2/TaN memristive devices occurring at ~5.0 and 5.50 V, respectively. Arrows indicate switching (set and reset) directions of both memristive devices. (c, d) DC endurance characteristics for 103 cycles of W/HfO2/TaN and W/TiO2/HfO2/TaN memristive devices. (e) Excellent pulse endurance characteristics for over 107 switching cycles attained with 10 µs programming pulses (set: 1.0 V, reset: -1.0 V) of W/TiO2/HfO2/TaN memristive devices. (d) Retention tests made at LRS and HRS show no evident change for over 104 s when W/TiO2/HfO2/TaN crossbar array memristive device is backed at 125 °C.
Fig. 4. (a) Schematic illustrations of biological synapse (left) and crossbar array memristive device (right), which is sandwiched between presynaptic and postsynaptic spikes. (b) Change in response current over consecutive potentiating or depressing voltage pulses. When 50 positive pulses of width 10 μs with amplitude of 1.0 V and subsequently similar 50 negative pulses were applied to the memristive device, the response current gradually increased and then decreased with application of positive and negative pulses, respectively. (c) Synaptic currents of the memristor triggered by a pair of pulses. PPF index is defined as I2/I1 plotted as a function of pulse interval, Δt, between two successive pulses. Synaptic currents of the memristor triggered by a pair of pluses. (d) Characteristics of PPF index as a function of pulse interval (Δt,weight, decrease) with two fixed pulses of 1.0 V and pulse interval of 10 μs. Cyan line represents fitting following an exponential model, i.e., $\text{PPF}={{C}_{1}}\exp \left( -t/{{\tau }_{1}} \right)+{{C}_{2}}\left( -t/{{\tau }_{2}} \right)$. Asymmetric STDPs of (e) Hebbian learning rule and (f) anti-Hebbian learning rule are shown. The change of synapse weight (ΔW) is plotted as a function of the time difference (Δt) between pre- and post-spikes applied to top and bottom electrodes, respectively.
Fig. 5. Schematic of energy band diagram for the W/TiO2/HfO2/TaN memristive device (a) at zero bias, (b) forward bias, and (c) reverse bias. Schematic illustration of the resistive switching mechanism based on the formation/disruption of a conductive filament involving oxygen vacancies. (d) Pristine-state, (e) set-process, where memristive devices present a transition from initial state to low resistance state (LRS), and (f) reset-process, where memristive devices illustrate the switching from LRS to high resistance state (HRS), are shown.
Structure | Current Compliance (CC) | Set/Reset Voltage (V) | Endurance (Cycles) | Retention Time (s) | On/off ratio | Synaptic plasticity | Refs. |
---|---|---|---|---|---|---|---|
ITO/TiO2/HfO2/Pt | 3 mA | +1.5/₋1.5 | 500 | 104 | ~10 | No | [ |
Pt/TiO2/HfO2-x/TiN | 100 nA | +5.5/₋5.5 | ~ | 106 | ~100 | No | [ |
Pt/HfO2/TiO2/ITO | 5 mA | +0.6/₋1.5 | 100 | 104 | ~20 | No | [ |
Pt/HfO2/TiOx/Pt | 10 mA | +2.0/₋2.0 | 100 | 104 | ~100 | No | [ |
Ti/TiO2/HfO2/Si | free | +10.0/₋6.0 | 103 | 104 | ~ 200 | Yes | [ |
W/TiO2/HfO2/TaN | 100 μA | 0.6/₋0.6 | 107 | 104 | ~10 | Yes | This work |
Table 1 Performance comparison of W/TiO2/HfO2/TaN memristor with previously reported same high-k dielectric bilayer TiO2/HfO2-based RS memory devices.
Structure | Current Compliance (CC) | Set/Reset Voltage (V) | Endurance (Cycles) | Retention Time (s) | On/off ratio | Synaptic plasticity | Refs. |
---|---|---|---|---|---|---|---|
ITO/TiO2/HfO2/Pt | 3 mA | +1.5/₋1.5 | 500 | 104 | ~10 | No | [ |
Pt/TiO2/HfO2-x/TiN | 100 nA | +5.5/₋5.5 | ~ | 106 | ~100 | No | [ |
Pt/HfO2/TiO2/ITO | 5 mA | +0.6/₋1.5 | 100 | 104 | ~20 | No | [ |
Pt/HfO2/TiOx/Pt | 10 mA | +2.0/₋2.0 | 100 | 104 | ~100 | No | [ |
Ti/TiO2/HfO2/Si | free | +10.0/₋6.0 | 103 | 104 | ~ 200 | Yes | [ |
W/TiO2/HfO2/TaN | 100 μA | 0.6/₋0.6 | 107 | 104 | ~10 | Yes | This work |
[1] | A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M.R. Pazhouhandeh, S. Ecoffey, Y. Beilliard, R. Genov, D. Drouin, Adv. Intell. Syst. 2 (2020) 2000115. |
[2] | G. Indiveri, E. Chicca, R. Douglas, I.E.E.E. Trans, Neural Networks 17 (2006) 211-221. |
[3] |
L.O. Chua, IEEE Trans. Circuit Theory 18 (1971) 507-519.
DOI URL |
[4] |
T. Szkopek, Nat. Nanotechnol. 13 (2018) 357-357.
DOI URL PMID |
[5] |
U. Chand, C.Y. Huang, D. Kumar, T.Y. Tseng, Appl. Phys. Lett. 107 (2015) 203502.
DOI URL |
[6] | P. Peng, D. Xie, Y. Yang, C. Zhou, S. Ma, T. Feng, H. Tian, T. Ren, J. Phys. D. Appl. Phys. 45 (2012) 2762-2768. |
[7] |
H. Lv, X. Xu, H. Liu, R. Liu, Q. Liu, W. Banerjee, H. Sun, S. Long, L. Li, M. Liu, Sci. Rep. 5 (2015) 13311.
DOI URL |
[8] |
L.W. Zhou, X.L. Shao, X.Y. Li, H. Jiang, R. Chen, K.J. Yoon, H.J. Kim, K. Zhang, J. Zhao, C.S. Hwang, Appl. Phys. Lett. 107 (2015) 072901.
DOI URL |
[9] |
H. Hernández-Arriaga, E. López-Luna, E. Martínez-Guerra, M.M. Turrubiartes, A.G. Rodríguez, M.A. Vidal, J. Appl. Phys. 121 (2017) 064302.
DOI URL |
[10] |
L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu, Y. Zhou, J. Han, C. Ye, X. Chen, Z. Song, M. Zhu, Adv. Electron. Mater. 6 (2020) 1901012.
DOI URL |
[11] |
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Stra- chan, Z. Li, Q. Wu, M. Barnell, G.L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Nat. Mater. 16 (2017) 101-108.
DOI URL |
[12] | J.H. Ryu, S. Kim, Chao, Solitons Fractals 140 (2020) 110236. |
[13] |
Y.F. Wang, Y.C. Lin, I.T. Wang, T.P. Lin, T.H. Hou, Sci. Rep. 5 (2015) 10150.
DOI URL |
[14] |
C. Mahata, M. Kang, S. Kim, Nanomaterials 10 (2020) 2069.
DOI URL |
[15] | W.J. Chen, C.H. Cheng, P.E. Lin, Y.T. Tseng, T.C. Chang, J.S. Chen, ACS Appl. Elec- tron.Mater. 1 (2019) 2422-2430. |
[16] |
T. Wan, B. Qu, H. Du, X. Lin, Q. Lin, D.W. Wang, C. Cazorla, S. Li, S. Liu, D. Chu, J. Colloid Interface Sci. 512 (2018) 767-774.
DOI URL |
[17] |
Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang, Nanoscale 8 (2016) 14015-14022.
DOI URL |
[18] |
T. Tan, Y. Du, A. Cao, Y. Sun, H. Zhang, G. Zha, RSC Adv. 8 (2018) 41884-41891.
DOI URL |
[19] |
H. Ryu, S. Kim, Nanomaterials 10 (2020) 2055.
DOI URL |
[20] |
M. Ismail, H. Abbas, C. Choi, S. Kim, J. Alloys Compd. 835 (2020) 155256.
DOI URL |
[21] |
M. Ismail, H. Abbas, C. Choi, S. Kim, Appl. Surf. Sci. 529 (2020) 147107.
DOI URL |
[22] |
M. Ismail, A.M. Rana, S.-.U. Nisa, F. Hussain, M. Imran, K. Mahmood, I. Talib, E. Ahmed, D.H. Bao, Curr. Appl. Phys. 17 (2017) 1303-1309.
DOI URL |
[23] |
C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254 (2008) 26 85-26 89.
DOI URL |
[24] |
M. Ismail, S.U. Nisa, A.M. Rana, T. Akbar, J. Lee, S. Kim, Appl. Phys. Lett. 114 (2019) 012101.
DOI URL |
[25] |
H. Pang, N. Deng, Chin. Phys. Lett. 31 (2014) 107303.
DOI URL |
[26] |
I. Iatsunskyi, M. Kempiński, G. Nowaczyk, M. Jancelewicz, M. Pavlenko, K. Załeski, S. Jurga, Appl. Surf. Sci. 347 (2015) 777-783.
DOI URL |
[27] |
T. Hanawa, J. Periodontal Implant Sci. 41 (2011) 263-272.
DOI URL |
[28] |
X.L. Shao, K.M. Kim, K.J. Yoon, S.J. Song, J.H. Yoon, H.J. Kim, T.H. Park, D.E. Kwon, Y.J. Kwon, Y.M. Kim, X.W. Hu, J.S. Zhao, C.S. Hwang, Nanoscale 8 (2016) 16455-16466.
DOI URL |
[29] |
R. Methaapanon, S.F. Bent, J. Phys. Chem. C 114 (2010) 10498-10504.
DOI URL |
[30] |
B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6 (2016) 32355.
DOI URL |
[31] |
R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Lévy, J. Appl. Phys. 75 (1994) 2945-2951.
DOI URL |
[32] | D.R. Islamov, V.N. Kruchinin, V.S. Aliev, T.V. Perevalov, V.A. Gritsenko, I.P. Prosvirin, O.M. Orlov, A. Chin, Adv. Sci. Technol. 99 (2016) 69-74. |
[33] |
A.S. Sokolov, Y.R. Jeon, S. Kim, B. Ku, D. Lim, H. Han, M.G. Chae, J. Lee, B.G. Ha, C. Choi, Appl. Surf. Sci. 434 (2018) 822-830.
DOI URL |
[34] |
T. Tan, T. Guo, Z. Wu, Z. Liu, Chin. Phys. B 25 (2016) 117306.
DOI URL |
[35] |
W. Zhang, J.Z. Kong, Z.Y. Cao, A.D. Li, L.G. Wang, L. Zhu, X. Li, Y.Q. Cao, D. Wu, Nanoscale Res. Lett. 12 (2017) 393.
DOI URL PMID |
[36] |
S. Jabeen, M. Ismail, A.M. Rana, E. Ahmed, Mater. Res. Express 4 (2017) 056401.
DOI URL |
[37] |
H. Zhou, X. Wei, W. Wei, C. Ye, R. Zhang, L. Zhang, Q. Xia, H. Huang, B. Wang, Surf. Coatings Technol. 359 (2019) 150-154.
DOI URL |
[38] | A. Sawa, Mater. Today 11 (2008) 28-36. |
[39] | Y.S. Rim, D.L. Kim, W.H. Jeong, H.J. Kim, Appl. Phys. Lett. 97 (2010) 2008-2011. |
[40] |
C. Liu, C.C. Zhang, Y.Q. Cao, D. Wu, P. Wang, A.D. Li, J. Mater. Chem. C 8 (2020) 12478-12484.
DOI URL |
[41] |
X.Y. Li, X.L. Shao, Y.C. Wang, H. Jiang, C.S. Hwang, J.S. Zhao, Nanoscale 9 (2017) 2358-2368.
DOI URL |
[42] |
S. Yu, Proc, IEEE 106 (2018) 260-285.
DOI URL |
[43] |
R. Yang, H.M. Huang, X. Guo, Adv. Electron. Mater. 5 (2019) 1900287.
DOI URL |
[44] |
Y. Van De Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, A. Salleo, Nat. Mater. 16 (2017) 414-418.
DOI URL |
[45] |
D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S.P. Wong, Nano Lett 12 (2012) 2179-2186.
DOI URL |
[46] |
Y. Dan, M.M. Poo, Neuron 44 (2004) 23-30.
DOI URL |
[47] |
L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 5 (2014) 3158.
DOI URL |
[48] | C. Saviane, L.P. Savtchenko, G. Raffaelli, L.L. Voronin, E. Cherubini, J Phys. Lon- don 544 (2002) 469-476. |
[49] |
P. Yao, H.Q. Wu, B. Gao, S.B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.S.P. Wong, H. Qian, Nat. Commun. 8 (2017) 15199.
DOI URL |
[50] |
Y. Liu, H. Zhou, R. Cheng, W. Yu, Y. Huang, X. Duan, Nano Lett 14 (2014) 1413-1418.
DOI URL |
[51] |
J. Woo, S. Yu, IEEE Nanotechnol. Mag. 12 (2018) 36-44.
DOI URL |
[52] | C.C. Chang, P.C. Chen, T. Chou, I.T. Wang, B. Hudec, C.C. Chang, C.M. Tsai, T.S. Chang, T.H. Hou, IEEE J. Emerg. Sel. Top. Circuits Syst. 8 (2018) 116-124. |
[53] |
J. Robertson, B. Falabretti, J. Appl. Phys. 100 (2006) 014111.
DOI URL |
[54] |
M.A. Jenkins, J.M. McGlone, J.F. Wager, J.F. Conley, J. Appl. Phys. 125 (2019) 055301.
DOI URL |
[55] |
B. Jaeckel, J.B. Sambur, B.A. Parkinson, J. Appl. Phys. 103 (2008) 063719.
DOI URL |
[56] |
J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20 (2009) 215201.
DOI URL |
[57] |
Y. Li, K.S. Yin, M.Y. Zhang, L. Cheng, K. Lu, S.B. Long, Y. Zhou, Z. Wang, K.H. Xue, M. Liu, X.S. Miao, Appl. Phys. Lett. 111 (2017) 213505.
DOI URL |
[58] |
V. Fiorentini, G. Gulleri, Phys. Rev. Lett. 89 (2002) 266101.
URL PMID |
[59] |
P.T. Liu, Y.S. Fan, C.C. Chen, IEEE Electron Dev. Lett. 35 (2014) 1233-1235.
DOI URL |
[60] |
J. Lee, E.M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, H. Hwang, Appl. Phys. Lett. 97 (2010) 172105.
DOI URL |
[61] |
R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei, J. Wang, L. Zhang, L.Q. Zhu, Adv. Electron. Mater. 5 (2019) 1800833.
DOI URL |
[62] |
J.H. Yoon, D.E. Kwon, Y. Kim, Y.J. Kwon, K.J. Yoon, T.H. Park, X.L. Shao, C.S. Hwang, Nanoscale 9 (2017) 11920-11928.
DOI URL |
[63] |
C. Ye, T. Deng, J. Zhang, L. Shen, P. He, W. Wei, H. Wang, Semicond. Sci. Technol. 31 (2016) 105005.
DOI URL |
[64] |
X. Ding, Y. Feng, P. Huang, L. Liu, J. Kang, Nanoscale Res. Lett. 14 (2019) 157.
DOI URL |
[1] | Tukaram D. Dongale, Atul C. Khot, Ashkan V. Takaloo, Kyung Rock Son, Tae Geun Kim. Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device [J]. J. Mater. Sci. Technol., 2021, 78(0): 81-91. |
[2] | Yixuan Lv, Yijun Zhang, Le Shi, Jian-Wen Shi, Jun Li, Zhihui Li, Xin Ji, Dandan Ma, Yonghong Cheng, Chunming Niu. Role of oxygen vacancy in rare-earth-free LiCa3Mg(VO4)3 phosphor: Enhancing photoluminescence by heat-treatment in oxygen flow [J]. J. Mater. Sci. Technol., 2021, 79(0): 123-132. |
[3] | Can Li, Fan Feng, Jie Jian, Youxun Xu, Fan Li, Hongqiang Wang, Lichao Jia. Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2021, 79(0): 21-28. |
[4] | Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. J. Mater. Sci. Technol., 2020, 49(0): 1-6. |
[5] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[6] | Chang Liu, Xiang Zhu, Peng Wang, Yisen Zhao, Yongqing Ma. Defects and interface states related photocatalytic properties in reduced and subsequently nitridized Fe3O4/TiO2 [J]. J. Mater. Sci. Technol., 2018, 34(6): 931-941. |
[7] | Cong Ye, Jiaji Wu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, Hao Wang. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review [J]. J. Mater. Sci. Technol., 2016, 32(1): 1-11. |
[8] | Zhaojun Guo, Liqiang Guo, Liqiang Zhu, Yuejin Zhu. Short-Term Synaptic Plasticity Mimicked on Ionic/Electronic Hybrid Oxide Synaptic Transistor Gated by Nanogranular SiO2 Films [J]. J. Mater. Sci. Technol., 2014, 30(11): 1141-1144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||