J. Mater. Sci. Technol. ›› 2022, Vol. 96: 85-93.DOI: 10.1016/j.jmst.2021.03.073
• Research Article • Previous Articles Next Articles
Q. Yana, B. Chena,*(), L. Caoa, K.Y. Liua, S. Lib, L. Jiab, K. Kondohc, J.S. Lia
Received:
2021-01-04
Revised:
2021-03-14
Accepted:
2021-03-17
Published:
2022-01-10
Online:
2022-01-05
Contact:
B. Chen
About author:
*E-mail addresses: chen@nwpu.edu.cn, biao.chen521@gmail.com (B. Chen).Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides[J]. J. Mater. Sci. Technol., 2022, 96: 85-93.
Fig. 1. (a) Schematical diagram of the SPS-fabricated networked GNSs/Ti64 composites. (b) The raw Ti64 powders. (c) Bright field image and SAD pattern of GNSs. (d) GNSs/Ti64 composite powders mixed by rocking mixing. (e) GNSs on the surface of powder particles. (f) The rocking mixed powder after ball milling. (g) EDS results of the powder image magnified in (f).
Fig. 3. Microstructures of networked GNSs/Ti64 composite: (a) BSE image. (b) BSE image of magnified blue box in (a). (c) SEM image of TiC boundary wall. (d) SEM image of α-Ti.
Samples | Density (g/cm3) | Theoretical density (g/cm3) | Relative density (%) | O (wt%) | N (wt%) | H (wt%) |
---|---|---|---|---|---|---|
Ti64 alloy | 4.448 | 4.506 | 98.71 | 0.1299 | 0.001101 | 0008459 |
GNSs/Ti64 | 4.400 | 4.478 | 98.25 | 0.1755 | 0.009134 | 0.005207 |
Networked GNSs/Ti64 | 4.404 | 4.496 | 97.95 | 0.1867 | 0.003008 | 0.005335 |
Table 1 Density and light elements content of as-built samples.
Samples | Density (g/cm3) | Theoretical density (g/cm3) | Relative density (%) | O (wt%) | N (wt%) | H (wt%) |
---|---|---|---|---|---|---|
Ti64 alloy | 4.448 | 4.506 | 98.71 | 0.1299 | 0.001101 | 0008459 |
GNSs/Ti64 | 4.400 | 4.478 | 98.25 | 0.1755 | 0.009134 | 0.005207 |
Networked GNSs/Ti64 | 4.404 | 4.496 | 97.95 | 0.1867 | 0.003008 | 0.005335 |
Fig. 5. (a) TEM image with insert SAD patterns. (b) HAADF image of selective box of b in (a). (c) EDS map of Al and C. (d) Bright filed image of (b). (e) HRTEM image of the interface. (f) IFFT of the section f in (e).
Fig. 6. TEM of networked GNSs/Ti64 at boundary: (a) Bright image. (b) HAADF image of (a). (c) V element map. (d) Bright image of white box in (a). (e) SAD pattern of the selective area in (d). (f) Dark field image of $\left( \bar{1}100 \right)$.
Fig. 7. Microstructures of the GNSs/Ti64 interface: (a) Bright image. (b) HAADF image. (c, d) Element maps of Ti and C respectively. (e) A magnified bright image at interface. (f) HRTEM image of box f in (e). (g) HRTEM image of box g on (f). (h) STEM image with insert STEM-BF image.
Materials | YS (MPa) | UTS (MPa) | El. (%) | Hardness (HV) |
---|---|---|---|---|
Ti64 | 686±6 | 806±35 | 4.1±0.7 | 287±17 |
GNSs/Ti64 | 769±20 | 877±9 | 4.0±0.6 | 322±18 |
Networked GNSs/Ti64 | 947±13 | 1013±15 | 3.6±1.0 | 329±10 |
Table 2 Mechanical properties of as-built sample.
Materials | YS (MPa) | UTS (MPa) | El. (%) | Hardness (HV) |
---|---|---|---|---|
Ti64 | 686±6 | 806±35 | 4.1±0.7 | 287±17 |
GNSs/Ti64 | 769±20 | 877±9 | 4.0±0.6 | 322±18 |
Networked GNSs/Ti64 | 947±13 | 1013±15 | 3.6±1.0 | 329±10 |
Fig. 9. SEM and BSE images of cross fracture morphology of networked GNSs/Ti64 composites: (a) BSE contrast image of the fracture. (b) GNSs vertical to the tensile direction magnified in blue box in (a). (c) SEM image of dimples. (d) SEM morphology image of the fracture. (e) BSE image of GNSs debonding from Ti-matrix in white box of (d). (f) GNSs parallel to tensile direction.
Fig. 10. SEM image of the longitudinal fracture section of networked GNSs/Ti64: (a, b) SEM images of the fracture at one side and (c, d) SEM images of another side of fracture.
[1] |
A.K. Geim, Science 324 (2009) 1530-1534.
DOI URL PMID |
[2] | C. Lee, X. Wei, J.W. Kysar, J. Hone, Sci. 321 (2008) 385-388. |
[3] | Q. Yan, B. Chen, J. Li, Mater. China 38 (2019) 1061-1073 (in Chinese). |
[4] |
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.
DOI URL |
[5] |
Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Nat. Commun. 4 (2013) 2114.
DOI URL |
[6] |
R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, Compos. Sci. Technol. 72 (2012) 1459-1476.
DOI URL |
[7] |
S.C. Tjong, Mater. Sci. Eng. R 74 (2013) 281-350.
DOI URL |
[8] | P. Shao, W. Yang, Q. Zhang, Q. Meng, X. Tan, Z. Xiu, J. Qiao, Z. Yu, G. Wu, Com- pos. Part A 109 (2018) 151-162. |
[9] |
Q. Yuan, X. Zeng, Y. Wang, L. Luo, Y. Ding, D. Li, Y. Liu, J. Mater. Sci. Technol. 33 (2017) 452-460.
DOI URL |
[10] |
J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25 (2013) 6724-6729.
DOI URL |
[11] |
D. Lin, C.R. Liu, G.J. Cheng, Acta Mater 80 (2014) 183-193.
DOI URL |
[12] |
L.L. Dong, J.W. Lu, Y.Q. Fu, W.T. Huo, Y. Liu, D.D. Li, Y.S. Zhang, Carbon 164 (2020) 272-286.
DOI URL |
[13] |
L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168.
DOI URL |
[14] |
S.I. Oh, J.Y. Lim, Y.C. Kim, J. Yoon, G.H. Kim, J. Lee, Y.M. Sung, J.H. Han, J. Alloys Compd. 542 (2012) 111-117.
DOI URL |
[15] |
B. Chen, K. Kondoh, J.S. Li, M. Qian, Compos. Part B 183 (2020) 107691.
DOI URL |
[16] |
S. Li, B. Sun, H. Imai, K. Kondoh, Carbon 61 (2013) 216-228.
DOI URL |
[17] |
X. Zhang, N. Zhao, C. He, Prog. Mater. Sci. 113 (2020) 100672.
DOI URL |
[18] |
L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, H.X. Peng, Scr. Mater. 60 (2009) 996-999.
DOI URL |
[19] |
P. Zhou, J.N. Qin, W.J. Lu, D. Zhang, Mater. Sci. Technol. 27 (2013) 1788-1792.
DOI URL |
[20] |
C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Compos. Sci. Technol. 68 (2008) 2171-2177.
DOI URL |
[21] |
S.C. Tjong, Y.W. Mai, Compos. Sci. Technol. 68 (2008) 583-601.
DOI URL |
[22] | A.A. Adebisi, M. Maleque, M. Rahman, Int. J. Automot. Mech. Eng. 4 (2011) 974-980. |
[23] |
J. Chen, C. Bao, W. Chen, L. Zhang, J. Liu, J. Mater. Sci. Technol. 33 (2017) 668-674.
DOI |
[24] | T. Khan, P. Kuentzmann, Mater. Sci.Forum 546-549 (2007) 1171-1178. |
[25] | X. Liu, J. Li, X. Yu, H. Fan, Q. Wang, S. Yan, L. Wang, W. Jiang, Ceram. Int. A 42 (2016) 165-172. |
[26] |
X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, D.H. Yu, Mater. Sci. Eng. A 687 (2017) 164-174.
DOI URL |
[27] |
X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge, D.D. Wang, Mater. Des. 140 (2018) 431-441.
DOI URL |
[28] |
L.L. Dong, B. Xiao, L.H. Jin, J.W. Lu, Y. Liu, Y.Q. Fu, Y.Q. Zhao, G.H. Wu, Y.S. Zhang, Ceram. Int. 45 (2019) 19370-19379.
DOI URL |
[29] |
L.L. Dong, B. Xiao, Y. Liu, Y.L. Li, Y.Q. Fu, Y.Q. Zhao, Y.S. Zhang, Ceram. Int. 44 (2018) 17835-17844.
DOI URL |
[30] |
X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, Mater. Sci. Eng. A 705 (2017) 153-159.
DOI URL |
[31] | L.J. Huang, Q. An, L. Geng, S. Wang, S. Jiang, X.P. Cui, R. Zhang, F.B. Sun, Y. Jiao, X. Chen, C.Y. Wang, Adv. Mater. 33 (2020) 2000688. |
[32] |
X. Zhang, Y. Xu, M. Wang, E. Liu, N. Zhao, C. Shi, D. Lin, F. Zhu, C. He, Nat. Commun. 11 (2020) 2775.
DOI URL |
[33] |
X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, W. Bacsa, N. Zhao, C. He, Nanoscale 9 (2017) 11929-11938.
DOI URL |
[34] |
F.M. Zhang, J. Wang, T.F. Liu, C.Y. Shang, Mater. Des. 186 (2020) 108330.
DOI URL |
[35] |
L.J. Huang, S. Wang, L. Geng, B. Kaveendran, H.X. Peng, Compos. Sci. Technol. 82 (2013) 23-28.
DOI URL |
[36] |
L.J. Huang, L. Geng, H.X. Peng, J. Zhang, Scr. Mater. 64 (2011) 844-847.
DOI URL |
[37] |
L. Huang, L. Wang, M. Qian, J. Zou, Scr. Mater. 141 (2017) 133-137.
DOI URL |
[38] |
L.J. Huang, S. Wang, Y.S. Dong, Y.Z. Zhang, F. Pan, L. Geng, H.X. Peng, Mater. Sci. Eng. A 545 (2012) 187-193.
DOI URL |
[39] |
S. Liu, Y.C. Shin, Mater. Des. 164 (2019) 107552.
DOI URL |
[40] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater 85 (2015) 74-84.
DOI URL |
[41] |
Q. Yan, B. Chen, N. Kang, X. Lin, S. Lv, K. Kondoh, S. Li, J.S. Li, Mater. Charact. 164 (2020) 110358.
DOI URL |
[42] |
B. Chen, K. Kondoh, H. Imai, J. Umeda, M. Takahashi, Scr. Mater. 113 (2016) 158-162.
DOI URL |
[43] |
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Pis- canec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
URL PMID |
[44] |
Q. Yan, B. Chen, J.S. Li, Carbon 174 (2021) 451-462.
DOI URL |
[45] |
S. Li, Y. Yang, R.D.K. Misra, Y. Liu, D. Ye, C. Hu, M. Xiang, Carbon 164 (2020) 378-390.
DOI URL |
[1] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[2] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[3] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[4] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[5] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[6] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[7] | Meiying Lv, Xuchao Chen, Zhenxin Li, Min Du. Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater [J]. J. Mater. Sci. Technol., 2021, 92(0): 109-119. |
[8] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[9] | Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries [J]. J. Mater. Sci. Technol., 2021, 95(0): 193-202. |
[10] | Jun Zhao, Bin Jiang, Yuan Yuan, Qinghang Wang, Ming Yuan, Aitao Tang, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Understanding the enhanced ductility of Mg-Gd with Ca and Zn microalloying by slip trace analysis [J]. J. Mater. Sci. Technol., 2021, 95(0): 20-28. |
[11] | Rahul Franklin, Weiheng Xu, Dharneedar Ravichandran, Sayli Jambhulkar, Yuxiang Zhu, Kenan Song. Reinforcing carbonized polyacrylonitrile fibers with nanoscale graphitic interface-layers [J]. J. Mater. Sci. Technol., 2021, 95(0): 78-87. |
[12] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[13] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[14] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[15] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||