J. Mater. Sci. Technol. ›› 2022, Vol. 96: 69-84.DOI: 10.1016/j.jmst.2021.05.002
• Research Article • Previous Articles Next Articles
Lihe Qiana,b,*(), Zhi Lia,b, Tongliang Wanga,b, Dongdong Lia,b, Fucheng Zhanga,b, Jiangying Menga,c
Received:
2021-04-14
Revised:
2021-05-09
Accepted:
2021-05-10
Published:
2022-01-10
Online:
2022-01-05
Contact:
Lihe Qian
About author:
*State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China. E-mail address: dlhqian@yahoo.com (L. Qian).Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel[J]. J. Mater. Sci. Technol., 2022, 96: 69-84.
C | Si | Mn | Al | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|
0.19 | 0.69 | 1.32 | 1.36 | 1.40 | 0.35 | 0.38 | balance |
Table 1 Chemical composition of the steel investigated (wt%).
C | Si | Mn | Al | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|
0.19 | 0.69 | 1.32 | 1.36 | 1.40 | 0.35 | 0.38 | balance |
Fig. 1. (a) and (b) dilation-temperature curves during cooling and isothermal holding for above- and below-Ms austempering, respectively; (c) and (d) dilation-time curves during isothermal holding for above- and below-Ms austempering, respectively; (e) temperature-time-transformation (TTT) curves for bainite transformation measured from the dilation curves; (f) a comparison of the dilatation curves of the specimens isothermally held at Tiso =420 °C and 350 °C, with the curve of the 350 °C specimen shifted towards right and down to overlap the curve of the 420 °C specimen at the end of PM formation. PM: pre-formed martensite, B: bainite, Ms: martensite start temperature, Tiso: isothermal temperature.
Fig. 2. Optical micrographs of the specimens isothermally held at (a, c) 420 °C and (b, d) 365 °C for different times. PAGB: parent austenite grain boundary, PM: pre-formed martensite, Bs: bainite sheaf.
Fig. 3. Typical SEM and TEM images of the specimens austempered at (a, c) 420 °C and (b, d) 365 °C. Bs: bainitic sheaf, M/A: martensite/austenite block, PM: pre-formed martensite, Bf: bainitic ferrite, Af: film-like retained austenite.
Fig. 4. (a) Volume fractions of various constituting phases austempered at different temperatures. PM: pre-formed martensite, Bf: bainite ferrite, FM: fresh martensite, RA: retained austenite. (b) Statistic distributions of bainitic lath thickness in the specimens austempered at 420 °C and 365 °C.
Fig. 5. (a) SEM image of the specimen austempered at 420 °C; (b) EBSD IQ map, (c) phase map and (d) IPF map of the same area outlined in (a). White and black lines indicate the boundaries of bainite packets and blocks, respectively. In (c) green color indicates the bcc phase. (e) <001> bcc pole figure obtained from the EBSD data of bainitic laths in a PAG shown at the left of the pole figure, and (f) theoretical <001> pole figure of bainite variants inside an austenite grain satisfying the K-S orientation. M/A: block of fresh martensite and retained austenite. Yellow arrows in each figure point to large bainite blocks.
Fig. 6. (a) SEM image of the specimen austempered at 365 °C; (b) IQ map, (c) phase map and (d) IPF map of the same area of (a). White and black lines indicate the boundaries of bainite packets and blocks, respectively. In (c), green and red colors indicate the bcc and fcc phases, respectively. (e) <001> bcc pole figure obtained from the EBSD data of bainitic laths in a PAG shown at the left of the pole figure, and (f) theoretical <001> pole figure of bainite variants inside an austenite grain satisfying the K-S orientation. (g) Extracted SEM image, IQ map and IPF map highlighting the area of a single PM band and its adjacent bainite, and (h) the distribution of the misorientation angle along the dotted yellow arrow line in (g). PM: pre-formed martensite, Bs: bainite sheaf.
Fig. 7. (a) Bright-field and (b) dark-field TEM images of the specimen austempered at 365 !!!!!!°C; (c) and (d) Diffraction patterns corresponding to regions 1 and 2 in (a), respectively. PM: pre-formed martensite, Bf: bainite ferrite, Af: austenite film.
Fig. 8. (a) and (b) Vickers indentation morphology; (c) and (d) statistic distribution of Vickers hardness values of the specimens austempered at (a, c) 365 °C and (b, d) 420 °C. (e) Kernel average misorientation (KAM) map of bcc phase in the same area as in Fig. 6(a) for the specimen austempered at 365 °C. Bs: bainite sheaf, PM: pre-formed martensite, M/A: block of fresh martensite and retained austenite.
Fig. 9. (a) Tensile stress-strain curves; (b) yield strength (σs), tensile strength (σb), uniform elongation (δu) and total elongation to fracture (δt) of the specimens austempered at various temperatures above and below Ms.
Fig. 10. (a) Impact load-displacement curves at typical above- and below-Ms austempering temperatures; (b) impact absorption energies and toughness of the specimens austempered at various temperatures above and below Ms.
Fig. 11. Equivalent strain distribution in the specimens austempered at (a, c, e) 420 °C and (b, d, f) 365 °C at different global strains: (a) and (b) 0.015 (c) and (d) 0.04; (e) and (f) 0.08. M/A: block of fresh martensite and retained austenite, Bs: bainite sheaf, PM: pre-formed martensite.
Fig. 12. (a) and (b) Variation of local equivalent strain versus global strain at different locations shown in Fig. 11(a) and (b) for the specimens austempered at temperatures of 420 °C and 365 °C, respectively. (c) and (d) Local equivalent strain versus global strain, along the dotted arrow lines shown in Fig. 11(a) and (b) for the specimens austempered at 420 °C and 365 °C, respectively.
Fig. 13. (a) Schematic of the evolutions of bainitic structure isothermally held at above- and below-Ms temperatures. (b) Variation of the volume fraction of retained austenite with engineering strain of the specimens austempered at various temperatures above and below Ms. Tiso: isothermal temperature, GB: parent austenite grain boundary, PM: pre-formed martensite, UA: un-transformed austenite, Bf: bainitic ferrite, M/A: martensite/austenite block; RA: retained austenite.
Fig. 14. (a) and (b) SEM cross-sectional images showing microvoids formed below but adjacent to the fracture surface of impacted specimens subjected to austempering at 420 °C and 365 °C, respectively. M/A: block of fresh martensite and retained austenite, PM: pre-formed martensite, Bs: bainite sheaf.
[1] | H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, 3rd edition, Maney Publishing, U.K., 2015. |
[2] |
I.B. Timokhina, H. Beladi, X.Y. Xiong, Y. Adachi, P.D. Hodgson, Acta Mater. 59 (2011) 5511-5522.
DOI URL |
[3] |
B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, F.G. Caballero, J. Mater. Sci. 48 (2013) 6121-6132.
DOI URL |
[4] |
B. Liu, X. Lu, W. Li, X. Jin, Wear 398-399 (2018) 22-28.
DOI URL |
[5] |
M. Soliman, H. Palkowski, Arch. Civil Mech. Eng. 16 (2016) 403-442.
DOI URL |
[6] |
F. Hu, P.D. Hodgson, K.M. Wu, Mater. Lett. 122 (2014) 240-243.
DOI URL |
[7] |
J. He, A. Zhao, C. Zhi, H. Fan, Scr. Mater. 107 (2015) 71-74.
DOI URL |
[8] | H.F. Lan, L.X. Du, Q. Li, C.L. Qiu, J.P. Li, R.D.K. Misra, J.Alloys Compd. 710 (2017) 702-710. |
[9] |
C. Carcia-mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821-1885.
DOI URL |
[10] |
H. Liu, P. Fu, H. Liu, Y. Cao, C. Sun, N. Du, D. Li, J. Mater. Sci. Technol. 50 (2020) 245-256.
DOI URL |
[11] |
H.S. Yang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 24 (2008) 335-342.
DOI URL |
[12] | F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, C. García de Andrés, Mater.Des. 30 (2009) 2077-2083. |
[13] |
L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian, Mater. Des. 39 (2012) 264-268.
DOI URL |
[14] |
Q. Zhou, L. Qian, J. Tan, J. Meng, F. Zhang, Mater. Sci. Eng. A 578 (2013) 370-376.
DOI URL |
[15] |
J. Meng, Y. Feng, Q. Zhou, L. Zhao, F. Zhang, L. Qian, J. Mater. Eng. Perform. 24 (2015) 3068-3076.
DOI URL |
[16] |
Q. Zhou, L. Qian, J. Meng, L. Zhao, F. Zhang, Mater. Des. 85 (2015) 4 87-4 96.
DOI URL |
[17] |
C. Garcia-Mateo, G. Paul, M.C. Somani, D.A. Porter, L. Bracke, A. Latz, C. García de Andrés, F.G. Caballero, Metals 7 (2017) 159-171.
DOI URL |
[18] |
S.M.C. Van Bohemen, M.J. Santofimia, J. Sietsma, Scr. Mater. 58 (2008) 4 88-4 91.
DOI URL |
[19] | P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedstrom, S.S. Babu, H. Terasaki, Y.I. Komizo, Metall. Mater. Trans. A 43A (2012) 4 984-4 988. |
[20] |
E.P.D. Silva, W. Xu, C. Föjer, Mater. Charact. 95 (2014) 85-93.
DOI URL |
[21] |
C. Hofer, H. Leitner, F. Winkelhofer, H. Clemens, S. Primig, Mater. Charact. 102 (2015) 85-91.
DOI URL |
[22] |
L. Zhao, L. Qian, J. Meng, Q. Zhou, F. Zhang, Scr. Mater. 112 (2016) 96-100.
DOI URL |
[23] |
A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Mater. Charact. 128 (2017) 248-256.
DOI URL |
[24] |
S. Samanta, P. Biswas, S. Giri, S.B. Singh, S. Kundu, Acta Mater. 105 (2016) 390-403.
DOI URL |
[25] | J. Feng, T. Frankenbach, M. Wettlaufer, Mater.Sci.Eng. A683 (2017)110-115. |
[26] |
A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Mater. Sci. Eng. A 735 (2018) 343-353.
DOI URL |
[27] |
L. Zhao, L. Qian, Q. Zhou, D. Li, T. Wang, Z. Jia, F. Zhang, J. Meng, Mater. Des. 183 (2019) 108123.
DOI URL |
[28] |
J. Tian, G. Xu, M. Zhou, H. Hu, Steel Res. Int. 89 (2018) 1700469.
DOI URL |
[29] | H. Kawata, K. Hayashi, N. Sugiura, N. Yoshinaga, M. Takahashi, Mater. Sci.Fo- rum 638-642 (2010) 3307-3312. |
[30] |
W. Gong, Y. Tomota, S. Harjo, Y.H. Su, K. Aizawa, Acta Mater. 85 (2015) 243-249.
DOI URL |
[31] |
H. Ghadbeigi, C. Pinna, S. Celotto, J.R. Yates, Mater. Sci. Eng. A 527 (2010) 5026-5032.
DOI URL |
[32] |
D. Yan, C.C. Tasan, D. Raabe, Acta Mater. 96 (2015) 399-409.
DOI URL |
[33] | L. Li, D. Cooman, P. Wollants, Y. He, X. Zhou, J. Mater. Sci. Technol. 20 (2004) 135-138. |
[34] |
A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Scr. Mater. 50 (2004) 1445-1449.
DOI URL |
[35] |
D.P. Koistinen, R.E. Marburger, Acta Metall. 7 (1959) 59-60.
DOI URL |
[36] |
G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 58 (2010) 6393-6403.
DOI URL |
[37] |
A.M. Ravi, A. Navarro-Lopez, J. Sietsma, M.J. Santofimia, Acta Mater. 188 (2020) 394-405.
DOI URL |
[38] | V. Simanio, T. Sourmail, Solid State Phenom. 172 (2011) 821-826. |
[39] |
H. Matsuda, H.K.D.H. Bhadeshia, Proc. R. Soc. Lond. A 460 (2004) 1707-1722.
DOI URL |
[40] |
S.B. Singh, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 245 (1998) 72-79.
DOI URL |
[41] |
L. Qian, K. Li, F. Huang, D. Li, T. Wang, J. Meng, F. Zhang, Scr. Mater. 183 (2020) 96-101.
DOI URL |
[42] |
I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 34 (2003) 1599-1609.
DOI URL |
[43] |
R. Zhu, S. Li, I. Karaman, R. Arroyav, T. Niendorf, H.J. Maier, Acta Mater. 60 (2012) 3022-3033.
DOI URL |
[44] | D.J. Dyson, B. Holmes, J. Iron Steel Inst. 208 (1970) 469-474. |
[45] |
Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 675 (2016) 153-163.
DOI URL |
[46] |
G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater 76 (2014) 425-433.
DOI URL |
[47] |
T.E. Swarr, G. Krauss, Met. Trans. A 7 (1976) 41-48.
DOI URL |
[48] | M.J. Roberts, Met. Trans. 1 (1970) 3287-3294. |
[49] | G. Krauss, in: Steels: Processing, Structure and Performance, 2nd edition, ASM Inter, 2005, p. 301. |
[50] | S. Morito, H. Saito, T. Ogawa.T. Furuhara, T.Maki, ISIJ Int. 45 (2005) 91-94. |
[51] |
H. Luo, X. Wang, Z. Liu, Z. Yang, J. Mater. Sci. Technol. 51 (2020) 130-136.
DOI URL |
[52] | P. Brozzo, G. Buzzichelli, A. Mascanzoni, M. Mirabile, Met. Sci. 11 (1977) 123-130. |
[53] |
M. Díaz-Fuentes, A. Iza-Mendia, I. Gutiérrez, Metall. Mater. Trans. A 34 (2003) 2505-2516.
DOI URL |
[54] |
C. Song, H. Yu, J. Lu, T. Zhou, S. Yang, Mater. Sci. Eng. A 726 (2018) 1-9.
DOI URL |
[55] |
Q. Zhou, L. Qian, L. Zhao, Q. Zhu, J. Meng, F. Zhang, J. Alloys Compd. 650 (2015) 944-948.
DOI URL |
[56] |
T. Jiang, H. Liu, J. Sun, S. Guo, Y. Liu, Mater. Sci. Eng. A 666 (2016) 207-213.
DOI URL |
[1] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[2] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[3] | Kui Chen, Huabing Li, Zhouhua Jiang, Fubin Liu, Congpeng Kang, Xiaodong Ma, Baojun Zhao. Multiphase miacrostructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 81-92. |
[4] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[5] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[6] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
[7] | Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(0): 1-14. |
[8] | Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal [J]. J. Mater. Sci. Technol., 2020, 57(0): 43-50. |
[9] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
[10] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[11] | Haidong Sun, Yuhui Wang, Zuohua Wang, Ning Liu, Yan Peng, Xiujuan Zhao, Ruiming Ren, Hongwang Zhang. Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 126-132. |
[12] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[13] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[14] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[15] | Minghe Zhang, Haiyang Chen, Youkang Wang, Shengjie Wang, Runguang Li, Shilei Li, Yan-Dong Wang. Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel [J]. J. Mater. Sci. Technol., 2019, 35(8): 1779-1786. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||