J. Mater. Sci. Technol. ›› 2022, Vol. 96: 31-68.DOI: 10.1016/j.jmst.2021.03.076
• Invited Review • Previous Articles Next Articles
Qiangang Fua,*,1(), Pei Zhanga,1(
), Lei Zhuanga(
), Lei Zhoua(
), Jiaping Zhanga(
), Jie Wangb(
), Xianghui Houc(
), Ralf Riedela,d(
), Hejun Lia,*(
)
Received:
2021-01-24
Revised:
2021-03-22
Accepted:
2021-03-22
Published:
2022-01-10
Online:
2022-01-05
Contact:
Qiangang Fu,Pei Zhang,Lei Zhuang,Lei Zhou,Jiaping Zhang,Jie Wang,Xianghui Hou,Ralf Riedel,Hejun Li
About author:
lihejun@nwpu.edu.cn (H. Li).Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples[J]. J. Mater. Sci. Technol., 2022, 96: 31-68.
Fig. 1. Hypersonic vehicle, materials properties (a-c) [1] and typical energy accommodation mechanisms (d, e) [3]: (a) Computational fluid-dynamics simulation of Mach 7 hypersonic flight showing surface heat transfer (red, hottest temperature; blue, coolest temperature) and flow-field contours. (b) A photograph of the experimental X-51A Waverider hypersonic aircraft (with expendable booster rocket at the rear) attached to a B-52H mother ship. (c) An Ashby-type map of temperature capability and nominal thermal conductivity of Ni-based superalloys, CMCs, UHTCs and C/C composites (along high-conductivity orientation). Energy accommodation mechanism of (d) ablative thermal protection materials (TPMs) and (e) reusable TPMs.
Fig. 3. Lab-scale high-temperature oxidation (a) and ablation (b) [16] tests, and erosion test in wind tunnel (simulate the real service environment) (c) (corresponding testing installation diagram was shown in (d)) [11] for C/Cs.
Fig. 4. The schematic showing (a) the protection approaches ((1) Modification of carbon/carbon matrix and (2) High-temperature protective coatings)) and (b) the application of promising micro/nano multiscale reinforcing strategies for C/Cs applied for extreme high-temperature environments, where the red arrows refer to reinforce C/Cs and the black ones refer to toughen coatings.
Fig. 6. SEM micrographs showing the SiCWs toughened multiphase and multilayer coatings (take SiCWs-HfB2-SiC-Si/SiC coatings as an example): (a) cross-section; (b,c) SiCWs bridging features on the fracture surface; (d) SiCWs pull-out and debonding features on the fracture surface [59].
Coating materials | Toughening materials | Fabrication methods | Time (h) | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | - | slurry+PC | 48 | 1773 | 5 | [ |
5 wt.% SiCWs | 48 | 1773 | 2.8 | |||
10 wt.%SiCWs | 48 | 1773 | 1.5 | |||
15 wt.% SiCWs | 48 | 1773 | 2.5 | |||
20 wt.% SiCWs | 48 | 1773 | 5.5 | |||
MoSi2-SiC-Si | - | 200 | 1773 | 2.31 | [ | |
10 wt.% SiCWs | 200 | 1773 | 0.33 | |||
SiC—CrSi2 | 15 wt.% SiCWs | 50 | 1673 | 0.74 | [ | |
15 wt.% SiCWs | 50 | 1773 | 0.67 | |||
SiC—CrSi2 | - | 50 | 1773 | 2.43 | [ | |
15 wt.% SiCWs | 50 | 1773 | 0.66 | |||
MoSi2-SiC | SiCWs | slurry | 2.67 | 1773 | 0.08 | [ |
TMS/MS | SiCWs/SiCWs | 2.67 | 1773 | 0.02 | ||
HfB2-SiC-Si/SiC | SiCWs | PC+CVD+slurry | 468 | 1773 | 0.88 | [ |
- | PC+slurry | 468 | 1773 | 4.86 | ||
MoSi2/SiC | Y2Si2O7W | PC+HEPD | 100 | 1773 | 0.73 | [ |
MoSi2/SiC | 1 wt% Al2O3W | PC+SAPS | 76 | 1773 | 0.17 | [ |
Table 1 Summary of isothermal oxidation testing data of SiC whiskers (SiCWs) toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Time (h) | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | - | slurry+PC | 48 | 1773 | 5 | [ |
5 wt.% SiCWs | 48 | 1773 | 2.8 | |||
10 wt.%SiCWs | 48 | 1773 | 1.5 | |||
15 wt.% SiCWs | 48 | 1773 | 2.5 | |||
20 wt.% SiCWs | 48 | 1773 | 5.5 | |||
MoSi2-SiC-Si | - | 200 | 1773 | 2.31 | [ | |
10 wt.% SiCWs | 200 | 1773 | 0.33 | |||
SiC—CrSi2 | 15 wt.% SiCWs | 50 | 1673 | 0.74 | [ | |
15 wt.% SiCWs | 50 | 1773 | 0.67 | |||
SiC—CrSi2 | - | 50 | 1773 | 2.43 | [ | |
15 wt.% SiCWs | 50 | 1773 | 0.66 | |||
MoSi2-SiC | SiCWs | slurry | 2.67 | 1773 | 0.08 | [ |
TMS/MS | SiCWs/SiCWs | 2.67 | 1773 | 0.02 | ||
HfB2-SiC-Si/SiC | SiCWs | PC+CVD+slurry | 468 | 1773 | 0.88 | [ |
- | PC+slurry | 468 | 1773 | 4.86 | ||
MoSi2/SiC | Y2Si2O7W | PC+HEPD | 100 | 1773 | 0.73 | [ |
MoSi2/SiC | 1 wt% Al2O3W | PC+SAPS | 76 | 1773 | 0.17 | [ |
Coating materials | Toughening materials | Fabrication methods | Cycle | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | - | slurry+PC | 30 | 1773 | 4.05 | [ |
5 wt.% SiCWs | 30 | 1773 | 3.09 | |||
10 wt.% SiCWs | 30 | 1773 | 2.19 | |||
15 wt.% SiCWs | 30 | 1773 | 2.85 | |||
20 wt.% SiCWs | 30 | 1773 | 3.72 | |||
SiC—CrSi2 | - | 20 | 1773 | 8.36 | [ | |
5 wt.% SiCWs | 20 | 1773 | 7.58 | |||
10 wt.% SiCWs | 20 | 1773 | 7.06 | |||
15 wt.% SiCWs | 20 | 1773 | 6.70 | |||
20 wt.% SiCWs | 20 | 1773 | 9.58 | |||
HfB2-SiC-Si/SiC | SiCWs | PC+CVD+slurry | 50 | 1773 | 4.48 | [ |
- | PC+slurry | 50 | 1773 | 19.46 | ||
silicate glass/SiC | mullite whiskers | PC+MSHD | 100 | 1573 | 2.21 | [ |
mullite/SiC | 100 | 1573 | 1.87 × 10-3 g cm-2 | [ |
Table 2 Summary of thermal shock testing data of SiC whiskers (SiCWs) toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Cycle | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | - | slurry+PC | 30 | 1773 | 4.05 | [ |
5 wt.% SiCWs | 30 | 1773 | 3.09 | |||
10 wt.% SiCWs | 30 | 1773 | 2.19 | |||
15 wt.% SiCWs | 30 | 1773 | 2.85 | |||
20 wt.% SiCWs | 30 | 1773 | 3.72 | |||
SiC—CrSi2 | - | 20 | 1773 | 8.36 | [ | |
5 wt.% SiCWs | 20 | 1773 | 7.58 | |||
10 wt.% SiCWs | 20 | 1773 | 7.06 | |||
15 wt.% SiCWs | 20 | 1773 | 6.70 | |||
20 wt.% SiCWs | 20 | 1773 | 9.58 | |||
HfB2-SiC-Si/SiC | SiCWs | PC+CVD+slurry | 50 | 1773 | 4.48 | [ |
- | PC+slurry | 50 | 1773 | 19.46 | ||
silicate glass/SiC | mullite whiskers | PC+MSHD | 100 | 1573 | 2.21 | [ |
mullite/SiC | 100 | 1573 | 1.87 × 10-3 g cm-2 | [ |
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
SiC | - | slurry+PC | 30 | 1773 | 0.27 | [ |
SiCNPs | 215 | 0.27 | ||||
SiC | - | 70 | 1873 | 4.52 | [ | |
10 wt.% ZrO2NPs ticlenannanostructured | 1.05 | |||||
10 wt.% ZrO2NPs ticlenannanostructured | 100 | 1873 | 1.75 | |||
SiC | SiCNPs | PC+hydrothermal electrophoretic deposition | 202 | 1773 | 0.79 | [ |
64 | 1873 | 1.3 | ||||
MoSi2/SiC | SiCNPs | 260 | 1773 | ~1.06 | [ | |
80 | 1873 | ~1.26 |
Table 3 Summary of isothermal oxidation testing data of nanopaticle (NPs) toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
SiC | - | slurry+PC | 30 | 1773 | 0.27 | [ |
SiCNPs | 215 | 0.27 | ||||
SiC | - | 70 | 1873 | 4.52 | [ | |
10 wt.% ZrO2NPs ticlenannanostructured | 1.05 | |||||
10 wt.% ZrO2NPs ticlenannanostructured | 100 | 1873 | 1.75 | |||
SiC | SiCNPs | PC+hydrothermal electrophoretic deposition | 202 | 1773 | 0.79 | [ |
64 | 1873 | 1.3 | ||||
MoSi2/SiC | SiCNPs | 260 | 1773 | ~1.06 | [ | |
80 | 1873 | ~1.26 |
Coating materials | Toughening materials | Fabrication methods | Temperature (K) | Cycles | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | SiCNPs | slurry+PC | 1773 | 40 | 1.52 | [ |
SiC | 10 wt.% ZrO2NPs ticlenannanostructured | 1873 | 8 | No spalling and cracking | [ | |
SiC | SiCNPs | PC+hydrothermal electrophoretic deposition | 1773 | 16 | [ | |
MoSi2/SiC | [ |
Table 4 Summary of thermal shock test data of nanoparticles (NPs) toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Temperature (K) | Cycles | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | SiCNPs | slurry+PC | 1773 | 40 | 1.52 | [ |
SiC | 10 wt.% ZrO2NPs ticlenannanostructured | 1873 | 8 | No spalling and cracking | [ | |
SiC | SiCNPs | PC+hydrothermal electrophoretic deposition | 1773 | 16 | [ | |
MoSi2/SiC | [ |
Fig. 10. Summary of isothermal oxidation (1473 K/2 h) testing data of CNTs toughened coatings (type a [88] and type b [89]), where PyC5, 10, 15 represent that the PyC deposition time was 5, 10 and 15 min, respectively.
Fig. 11. Micrographs of SiCNWs and coatings: (a) SiCNWs obtained by CVD, (b) surface of coatings prepared by PC and (c) cross-section of coatings obtained by the CVD-PC two-step technique [134].
Fig. 12. SEM morphologies: (a) SiC-Si internal coatings on C/Cs; (b) as-synthesized ultra-long SiCNWs on the SiC-Si internal coatings (inset refers to SEM image of SiCNWs directly peeled from the coatings, with a scale bar of 1 μm); (c) high-magnification of the part area in (b); (d) surface and (e) cross-section of the ultra-long SiCNWs reinforced SiC-Si coatings: and representative features on the fracture surface of the coatings like nanowires pullout (f), pullout of the reticulate SiCNWs architecture (g) and nanowires bridging (h); as well as (i) cross-section of the coated C/C samples with ultra-long SiCNWs after isothermal oxidation test and (j) magnified partial area of the void as well as (k) magnified partial area of the crack in (i) [146].
Fig. 13. SEM morphologies: (a) surface of the porous layer with the bamboo-shaped SiCNWs on C/Cs (inset of figure refers to cross-section image, with a scale bar of 100 μm); (b) high-magnification of the part area in (a); (c) radial cracks in the pure HfC coatings generated during the indentation testing; (d) radial cracks in the ultrafine bamboo-shaped SiCNWs-reinforced HfC coatings generated during the indentation testing, (e) high-magnification of (d) indicates the presence of the crack deflection mechanism (f) corresponding to the schematic illustration image; (g) fracture surface of the ultrafine bamboo-shaped SiCNWs-reinforced HfC coatings indicates the presence of the unique mechanical interlocking mechanism (h) corresponding to the schematic illustration image [149].
Fig. 15. (a) SEM fracture surface morphology of the interfacial area between the coatings and C/C substrate; (b) and (c) schematic description of the anchoring mechanism of in-situ grown SiC nanoribbons on the interfacial area between the coatings and C/C substrate [152].
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
MoSi2-SiC | - | PC | 110 | 1773 | 4.53 | [ |
SiCNWs | CVD+PC | 110 | 1773 | 1.78 | ||
SiC-MoSi2—CrSi2 | - | PC | 155 | 1773 | 1.06 | [ |
SiCNWs | CVD+PC | 155 | 1773 | 0.64 | ||
SiC | - | CVD+PC | 20 | 1773 | 7 | [ |
SiCNWs | 44 | 1773 | 2.68 | |||
SiC | SiCNWs | CVD | 420 | 1673 | 0.48 | [ |
MoSi2-WSi2-SiC-Si | - | CVD+PC | 24 | 1773 | 14.08 | [ |
SiCNWs | 82 | 1773 | 3.24 | |||
CrSi2-SiC-Si/SiC | - | PC+PC | 76 | 1773 | 4.27 | [ |
SiCNWs | PC+CVD+PC | 316 | 1773 | 1.24 | ||
SiC-ZrB2-ZrC/ SiC-Si | - | PC+PC | 210.5 | 1773 | 4.49 | [ |
SiCNWs | PC+EPD+PC | 210.5 | 1773 | 0.27 | ||
mullite/SiC | - | PC+PADD | 160 | 1773 | 3.7 | [ |
SiCNWs | PC+HEPD+PADD | 235 | 1773 | 3.57 | ||
SiC-Si/SC-Si | - | PC+PC | 22 | 1773 | 3.74 | [ |
Ultra-long SiCNWs | PC+CVD+PC | 150 | 1773 | 0.44 | ||
SiC | Bamboo-shaped SiCNWs | CVD+PC | 72 | 1773 | 0.5 | [ |
Si-Cr/SiC-Si | Bamboo-shaped SiCNWs | PC+HT+PC | 185 | 1773 | -0.79 | [ |
Table 5 Comparison of isothermal oxidation properties of SiC nanowires (SiCNWs) toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
MoSi2-SiC | - | PC | 110 | 1773 | 4.53 | [ |
SiCNWs | CVD+PC | 110 | 1773 | 1.78 | ||
SiC-MoSi2—CrSi2 | - | PC | 155 | 1773 | 1.06 | [ |
SiCNWs | CVD+PC | 155 | 1773 | 0.64 | ||
SiC | - | CVD+PC | 20 | 1773 | 7 | [ |
SiCNWs | 44 | 1773 | 2.68 | |||
SiC | SiCNWs | CVD | 420 | 1673 | 0.48 | [ |
MoSi2-WSi2-SiC-Si | - | CVD+PC | 24 | 1773 | 14.08 | [ |
SiCNWs | 82 | 1773 | 3.24 | |||
CrSi2-SiC-Si/SiC | - | PC+PC | 76 | 1773 | 4.27 | [ |
SiCNWs | PC+CVD+PC | 316 | 1773 | 1.24 | ||
SiC-ZrB2-ZrC/ SiC-Si | - | PC+PC | 210.5 | 1773 | 4.49 | [ |
SiCNWs | PC+EPD+PC | 210.5 | 1773 | 0.27 | ||
mullite/SiC | - | PC+PADD | 160 | 1773 | 3.7 | [ |
SiCNWs | PC+HEPD+PADD | 235 | 1773 | 3.57 | ||
SiC-Si/SC-Si | - | PC+PC | 22 | 1773 | 3.74 | [ |
Ultra-long SiCNWs | PC+CVD+PC | 150 | 1773 | 0.44 | ||
SiC | Bamboo-shaped SiCNWs | CVD+PC | 72 | 1773 | 0.5 | [ |
Si-Cr/SiC-Si | Bamboo-shaped SiCNWs | PC+HT+PC | 185 | 1773 | -0.79 | [ |
Coating material | Toughening materials | Fabrication methods | Cycle | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC-Si | - | CVD+HPRS | 30 | 1773 | 4.14 | [ |
SiCNW | 30 | 1773 | 2.41 | |||
SiC-MoSi2—CrSi2 | - | PC | 30 | 1773 | 6.92 | [ |
SiCNW | CVD+PC | 30 | 1773 | 3.42 | ||
SiC | - | CVD+PC | 20 | 1773 | 4.15 | [ |
SiCNW | 20 | 1773 | 1.25 | |||
SiC | - | CVD | 15 | 1773 | 7.075 | [ |
SiCNW | 15 | 1773 | 4.29 | |||
SiCNW | OPT+CVD | 15 | 1773 | 2.225 | ||
MoSi2-WSi2-SiC-Si | - | CVD+PC | 30 | 1773 | 4.83 | [ |
SiCNW | 30 | 1773 | 2.08 | |||
SiC-ZrB2-ZrC/SiC-Si | - | PC+PC | 30 | 1773 | 11.13 | [ |
SiCNW | PC+CVD+PC | 30 | 1773 | 2.28 | ||
SiCNW | PC+EPD+PC | 30 | 1773 | 0.52 | ||
Mullite/SiC | - | PC+PADD | 40 | 1773 | 4.39 | [ |
SiCNW | PC+HEPD+PADD | 50 | 1773 | 0.03 |
Table 6 Summary of thermal shock testing data of SiC nanowires (SiCNWs) toughened coatings.
Coating material | Toughening materials | Fabrication methods | Cycle | Temperature (K) | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC-Si | - | CVD+HPRS | 30 | 1773 | 4.14 | [ |
SiCNW | 30 | 1773 | 2.41 | |||
SiC-MoSi2—CrSi2 | - | PC | 30 | 1773 | 6.92 | [ |
SiCNW | CVD+PC | 30 | 1773 | 3.42 | ||
SiC | - | CVD+PC | 20 | 1773 | 4.15 | [ |
SiCNW | 20 | 1773 | 1.25 | |||
SiC | - | CVD | 15 | 1773 | 7.075 | [ |
SiCNW | 15 | 1773 | 4.29 | |||
SiCNW | OPT+CVD | 15 | 1773 | 2.225 | ||
MoSi2-WSi2-SiC-Si | - | CVD+PC | 30 | 1773 | 4.83 | [ |
SiCNW | 30 | 1773 | 2.08 | |||
SiC-ZrB2-ZrC/SiC-Si | - | PC+PC | 30 | 1773 | 11.13 | [ |
SiCNW | PC+CVD+PC | 30 | 1773 | 2.28 | ||
SiCNW | PC+EPD+PC | 30 | 1773 | 0.52 | ||
Mullite/SiC | - | PC+PADD | 40 | 1773 | 4.39 | [ |
SiCNW | PC+HEPD+PADD | 50 | 1773 | 0.03 |
Fig. 16. SEM morphologies: as-prepared SiC nanowires (SiCNWs) (a); SiCNWs wrapped by PyC layers (SiCNW@PyC) with the thickness of 1.5 μm before (b) and after (c) heated at 2373 K and SiCNW@PyC with the thickness of 1 μm heated at 2373 K (d); as well as pure SiCNWs after heat treatment at 2073 K (e), 2173 K (f), 2273 K (g), and 2373 K (h) The bottom-left corner insets are the corresponding X-ray diffraction (XRD) pattern and the top-right corner insets are the high magnification [160].
Fig. 17. Transmission electron microscopy (TEM) image of the SiCNW@PyC structures showing the location of the nanowires (a), high-resolution TEM (FRTEM) image of the SiCNW/PyC interface (area A) (b) and TEM images of SiCNWs wrapped by PyC layers with the thickness of 1 μm heated at 2373 K. The insets are the corresponding selected-area electron-diffraction (SAED) pattern [160].
Fig. 18. Schematic of preparing SAPS-ZrB2-ZrC coatings with SiCNW@PyC core-shell networks on C/C-ZrB2-ZrC-SiC substrates (a), and SEM/TEM images of SiCNW@PyC core-shell structures (b) [162].
Fig. 20. Surface SEM morphology (a) (scale bar in the inset figure is 100 nm); XRD pattern (b) of the synthesized HfCNW porous layer on SiC-coated C/C samples; TEM image of a single HfCNW (c) (inset is the EDX pattern of the HfCNWs); SAED (selected area electron diffraction) pattern (d) and HRTEM (high resolution transmission electronmicroscopy) image (e) recorded from the square area in (c) [176].
Fig. 21. SEM morphologies of the synthesized SiC/HfC coatings (a,b) and those with HfCNWs (c,d), as well as cross-section SEM morphologies of SiC/HfC coated samples (e,g,i) and those with HfCNWs (g,h,j) in central ablation region after the cyclic ablation [177].
Coating materials | Fabrication methods | Oxidation test | Refs. | ||||
---|---|---|---|---|---|---|---|
Without HfCNWs | With HfCNWs | Mass loss reduced by (%) | |||||
Condition | Mass loss (%) | Condition | Mass loss (%) | ||||
SiC | CVD+ PC | 1773 K/20 h | 12.54 | 1773 K/76 h | 3.80 | - | [ |
TaSi2-TaC-SiC-Si | 1773 K/77 h | 6.43 | 1773 K/100 h | 1.38 | - | [ | |
TaSi2-TaC-SiC-Si/SiC | PC+CVD+ PC | 1773 K/151 h | 3.34 | 1773 K/340 h | 1.77 | - | [ |
Si-Mo-Cr/SiC | 1773 K/270 h | 1.18 | 1773 K/270 h | 0.19 | 83.9 | [ |
Table 7 Summary of isothermal oxidation test data of HfC nanowires (HfCNWs) toughened coatings.
Coating materials | Fabrication methods | Oxidation test | Refs. | ||||
---|---|---|---|---|---|---|---|
Without HfCNWs | With HfCNWs | Mass loss reduced by (%) | |||||
Condition | Mass loss (%) | Condition | Mass loss (%) | ||||
SiC | CVD+ PC | 1773 K/20 h | 12.54 | 1773 K/76 h | 3.80 | - | [ |
TaSi2-TaC-SiC-Si | 1773 K/77 h | 6.43 | 1773 K/100 h | 1.38 | - | [ | |
TaSi2-TaC-SiC-Si/SiC | PC+CVD+ PC | 1773 K/151 h | 3.34 | 1773 K/340 h | 1.77 | - | [ |
Si-Mo-Cr/SiC | 1773 K/270 h | 1.18 | 1773 K/270 h | 0.19 | 83.9 | [ |
Coating materials | Fabrication methods | Thermal shock test from 1773 K to room temperature for 30 time | Refs. | ||
---|---|---|---|---|---|
Without HfCNWs | With HfCNWs | Mass loss reduced by (%) | |||
Mass loss (%) | Mass loss (%) | ||||
TaSi2-TaC-SiC-Si | CVD+ PC | 4.37 | 3.18 | 27.23 | [ |
TaSi2-TaC-SiC-Si/SiC | PC+CVD+ PC | 2.73 | 0.96 | 64.84 | [ |
Si-Mo-Cr/SiC | 3.56 | 2.36 | 33.71 | [ |
Table 8 Summary of thermal shock test data of HfC nanowires (HfCNWs) toughened coatings.
Coating materials | Fabrication methods | Thermal shock test from 1773 K to room temperature for 30 time | Refs. | ||
---|---|---|---|---|---|
Without HfCNWs | With HfCNWs | Mass loss reduced by (%) | |||
Mass loss (%) | Mass loss (%) | ||||
TaSi2-TaC-SiC-Si | CVD+ PC | 4.37 | 3.18 | 27.23 | [ |
TaSi2-TaC-SiC-Si/SiC | PC+CVD+ PC | 2.73 | 0.96 | 64.84 | [ |
Si-Mo-Cr/SiC | 3.56 | 2.36 | 33.71 | [ |
Fig. 22. Schematic diagram of SiC/HfC coated samples in central ablation region during cyclic ablation tests: (a)-(c) without HfCNWs; (d)-(f) with HfCNWs [177].
Coating materials | Toughening materials | Fabrication methods | Ablation conditions | Time (s) | Mass ablation rate (mg/s) | Linear ablation rate (μm/s) | Refs. |
---|---|---|---|---|---|---|---|
ZrC | - | LPCVD | Oxyacetylene, flame ~3300 K, 4200 kW/m2, O2:0.4 MPa-0.42 L/s, C2H2:0.95 MPa-0.31 L/s | 100 | 0.19 | 0.73 | [ |
ZrCNPs | 100 | 0.11 | 0.36 | ||||
SiC | - | PIP | Oxyacetylene, O2/C2H2 (gas flow) =2:1 | 600 | 2.6 | 6.2 | [ |
9.09 wt.% SiCNPs | 600 | 2.1 | 5.1 | ||||
16.67 wt.% SiCNPs | 600 | 1.3 | 4.1 | ||||
23.68 wt.% SiCNPs | 600 | 1.6 | 4.6 | ||||
HfC | SiCNWs | CVD+CVD | Oxyacetylene, surface 2573 K, O2:0.4 MPa-0.244 L/s, C2H2:0.095 MPa-0.167 L/s | 60 | 0.19 | -2.7 | [ |
- | CVD | 60 | 0.34 | -6.3 | |||
Si-Mo-Cr | SiCNWs | BT+CVD+PC | Oxyacetylene, surface 1873 K, O2:0.4 MPa-0.88 m3/h, C2H2:0.095 MPa-0.65 m3/h | 30 × 5s | 15.31 mg cm-2 | - | [ |
- | BT+PC | 30 × 5s | 28.56 mg cm-2 | - | |||
SiC/HfC | HfCNWs | PC+LPCVD+SAPS | Oxyacetylene, 2400 kW/m2, O2:0.4 MPa-0.244 L/s, C2H2:0.095 MPa-0.167 L/s | 3 × 60s | 0.444 | -0.767 | [ |
- | PC+SAPS | 3 × 60s | 1.341 | -0.333 | |||
HfC | HfCNWs (CCVD for 1 h) | CCVD+CVD | 120 | 1.21 | 1.48 | [ | |
- | CVD | 120 | 0.41 | -1.53 | |||
SiC/ZrB2-SiC | HfCNWs | PC+LPCVD+SAPS | 90 | -0.12 | - | [ | |
- | PC+SAPS | 90 | 0.20 | - |
Table 9 Ablation testing data of nanomaterials toughened coatings.
Coating materials | Toughening materials | Fabrication methods | Ablation conditions | Time (s) | Mass ablation rate (mg/s) | Linear ablation rate (μm/s) | Refs. |
---|---|---|---|---|---|---|---|
ZrC | - | LPCVD | Oxyacetylene, flame ~3300 K, 4200 kW/m2, O2:0.4 MPa-0.42 L/s, C2H2:0.95 MPa-0.31 L/s | 100 | 0.19 | 0.73 | [ |
ZrCNPs | 100 | 0.11 | 0.36 | ||||
SiC | - | PIP | Oxyacetylene, O2/C2H2 (gas flow) =2:1 | 600 | 2.6 | 6.2 | [ |
9.09 wt.% SiCNPs | 600 | 2.1 | 5.1 | ||||
16.67 wt.% SiCNPs | 600 | 1.3 | 4.1 | ||||
23.68 wt.% SiCNPs | 600 | 1.6 | 4.6 | ||||
HfC | SiCNWs | CVD+CVD | Oxyacetylene, surface 2573 K, O2:0.4 MPa-0.244 L/s, C2H2:0.095 MPa-0.167 L/s | 60 | 0.19 | -2.7 | [ |
- | CVD | 60 | 0.34 | -6.3 | |||
Si-Mo-Cr | SiCNWs | BT+CVD+PC | Oxyacetylene, surface 1873 K, O2:0.4 MPa-0.88 m3/h, C2H2:0.095 MPa-0.65 m3/h | 30 × 5s | 15.31 mg cm-2 | - | [ |
- | BT+PC | 30 × 5s | 28.56 mg cm-2 | - | |||
SiC/HfC | HfCNWs | PC+LPCVD+SAPS | Oxyacetylene, 2400 kW/m2, O2:0.4 MPa-0.244 L/s, C2H2:0.095 MPa-0.167 L/s | 3 × 60s | 0.444 | -0.767 | [ |
- | PC+SAPS | 3 × 60s | 1.341 | -0.333 | |||
HfC | HfCNWs (CCVD for 1 h) | CCVD+CVD | 120 | 1.21 | 1.48 | [ | |
- | CVD | 120 | 0.41 | -1.53 | |||
SiC/ZrB2-SiC | HfCNWs | PC+LPCVD+SAPS | 90 | -0.12 | - | [ | |
- | PC+SAPS | 90 | 0.20 | - |
Fig. 23. SEM morphologies of carbon fibres after grafting SCNTs (spreading grafting CNTs) (a,c and the inset of c) and RCNTs (radial grafting CNTs) (b,d and the inset of d) [196].
Fig. 24. Schematic of the structure (Left) and fracture morphology (Middle), as well as flexural stress-strain curves (Right) of C/C, C/C—Cu and C/C—Cu-CNTs [198].
Fig. 25. (a) Illustration of the ablation setups; (b) the variation of surface temperature with ablation time during the ablation process; (c) simulated velocity filed of the ablation process by Ansys Fluent; (d) effect of the velocity field on the surface morphology of C/Cs [199].
Fig. 26. Ablation behaviors of C/Cs versus EPD time (min): (a) ablated surface morphology; (b) linear and mass ablation rates and (c) height map for the ablated samples, where the surface of the original sample was marked as 0; (d) brief illustration of the ablation process cross section [199].
Fig. 27. Literature summary of the common matrix modification measures for decreasing the mass (a) and (b) linear ablation rates of C/Cs at a lower density, successively cited from [[200], [201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [212], [213]] and [199], where the data are average values.
Fig. 28. Carbon-bonded carbon fibers composites (CBCFCs) with in-situ grown SiCNWs: (a) schematic illustration for the fabrication of CBCFCs with in-situ grown SiCNWs; (b) the SiCNWs bridging between the PyC matrix and the carbon fibers at the fracture surface of CBCFCs; (c) the stress-strain curves for flexural tests [214].
Fig. 29. Schematic diagram of carbon fiber cloth laminated perform introduced with SiCNWs (a); SEM morphologies of carbon fiber cloth before (b) and after (c) electrophoretically depositing (EPD) SiCNWs and the corresponding cross-section image (d) [216].
Fig. 31. SEM micrographs show different roles of SiCNW networks in the formation of the network reinforced film after ablation for 240 s: (a) interlocking effect among molten sheets, (b) network bridging and bonding, (c) crack deflection and bridging, (d) pinning effect [217].
Fig. 34. (a) Photo of carbon fiber (CF)/high-silica fiber (HSF) preform, (b) Schematic diagram of the 0/90 lay-up structure, and (c) Integral structure photo of CF-HSF/C-SiC composite [227].
Fig. 35. Geometry of the hybrid thermal protection material (TPM) (a) macrograph of the test samples with dimensions of 120 × 120 × 30 mm3, which were attached to an aluminum alloy plate filled in a copper water-cooled basement, where the dimensions of the coated-C/Cs (Upper) were 20 × 120 × 10 mm3, and the dimensions of the mullite fiber (MF) tiles (Lower) were 20 × 120 × 20 mm3; (b) schematic of the test samples in plasmatron, where the basement enabled the test models to be moved into or out of the flow via mechanical control, and an angle of 15° was selected between the torch tube and the sample; (c) typical screenshot for the video recording of sample in plasma flow [229].
Matrix materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (min) | Temperature (K) | Mass loss (%) | ||||
C/C | - | CVI | 200 | 873 | 19.2 | [ |
SiCNWs | EPD+CVI | 200 | 873 | 8.6 | ||
- | CVI | 40 | 1073 | 89.5 | ||
SiCNWs | EPD+CVI | 40 | 1073 | 69.7 | ||
C/C | - | CVI | 180 | 873 | 2.04 | [ |
CNTs | CCVD+CVI | 180 | 873 | 0.85 | ||
- | CVI | 180 | 1173 | 78.27 | ||
CNTs | CCVD+CVI | 180 | 1173 | 69.24 | ||
C/C | - | CVI | 500 | 843 | 41.1 | 196] |
SCNTs | CCVD+CVI | 500 | 843 | 29.8 | ||
RCNTs | 500 | 843 | 16.1 | |||
C/C | - | CVI | 10 | 973 | 0.6 | 197] |
CNF | CCVD+CVI | 10 | 973 | 0.2 | ||
- | CVI | 10 | 1173 | 3.7 | ||
CNF | CCVD+CVI | 10 | 1173 | 3.2 |
Table 10. Summary of isothermal oxidation testing data of micro/nano multiscale strategies reinforced C/Cs.
Matrix materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (min) | Temperature (K) | Mass loss (%) | ||||
C/C | - | CVI | 200 | 873 | 19.2 | [ |
SiCNWs | EPD+CVI | 200 | 873 | 8.6 | ||
- | CVI | 40 | 1073 | 89.5 | ||
SiCNWs | EPD+CVI | 40 | 1073 | 69.7 | ||
C/C | - | CVI | 180 | 873 | 2.04 | [ |
CNTs | CCVD+CVI | 180 | 873 | 0.85 | ||
- | CVI | 180 | 1173 | 78.27 | ||
CNTs | CCVD+CVI | 180 | 1173 | 69.24 | ||
C/C | - | CVI | 500 | 843 | 41.1 | 196] |
SCNTs | CCVD+CVI | 500 | 843 | 29.8 | ||
RCNTs | 500 | 843 | 16.1 | |||
C/C | - | CVI | 10 | 973 | 0.6 | 197] |
CNF | CCVD+CVI | 10 | 973 | 0.2 | ||
- | CVI | 10 | 1173 | 3.7 | ||
CNF | CCVD+CVI | 10 | 1173 | 3.2 |
Matrix materials | Toughening materials | Fabrication methods | Abl ation conditions | Time (s) | Mass ablation rate (mg/s) | Linear ablation rate (μm/s) | Refs. |
---|---|---|---|---|---|---|---|
C/C-ZrB2-ZrC-SiC | SiCNWs | CVI+PIP | Plasma flame, surface ~2573 K | 240 | 0.173 | 0.063 | [ |
C/C-ZrC-SiC | SiCNWs | CLVD | Oxyacetylene, surface 2573 K | 90 | 1.39 ± 0.27 | 1.72 ± 0.20 | [ |
SiCNW@PyC | 90 | 0.47 ± 0.19 | 0.73 ± 0.14 | ||||
SiCNWs | Oxyacetylene, surface 3273 K | 90 | 4.57 ± 0.29 | 3.74 ± 0.22 | |||
SiCNW@PyC | 90 | 1.99 ± 0.21 | 1.59 ± 0.12 | ||||
C/C | - | ICVI | Oxyacetylene, surface 2573 K | 20 | 6.8 | 29.7 | [ |
HfCNWs | PIP+ICVI | 20 | 3.2 | 7.5 | |||
C/C | - | CVI+PIP | H2(7.6 L/min)-O2(4.6 L/min) flame, surface ~3073 K | 750 | 8.14 | 5.29 | [ |
SiCF | 750 | 2.16 | 1.88 |
Table 11. Ablation testing data of micro/nano multiscale strategies reinforced C/Cs.
Matrix materials | Toughening materials | Fabrication methods | Abl ation conditions | Time (s) | Mass ablation rate (mg/s) | Linear ablation rate (μm/s) | Refs. |
---|---|---|---|---|---|---|---|
C/C-ZrB2-ZrC-SiC | SiCNWs | CVI+PIP | Plasma flame, surface ~2573 K | 240 | 0.173 | 0.063 | [ |
C/C-ZrC-SiC | SiCNWs | CLVD | Oxyacetylene, surface 2573 K | 90 | 1.39 ± 0.27 | 1.72 ± 0.20 | [ |
SiCNW@PyC | 90 | 0.47 ± 0.19 | 0.73 ± 0.14 | ||||
SiCNWs | Oxyacetylene, surface 3273 K | 90 | 4.57 ± 0.29 | 3.74 ± 0.22 | |||
SiCNW@PyC | 90 | 1.99 ± 0.21 | 1.59 ± 0.12 | ||||
C/C | - | ICVI | Oxyacetylene, surface 2573 K | 20 | 6.8 | 29.7 | [ |
HfCNWs | PIP+ICVI | 20 | 3.2 | 7.5 | |||
C/C | - | CVI+PIP | H2(7.6 L/min)-O2(4.6 L/min) flame, surface ~3073 K | 750 | 8.14 | 5.29 | [ |
SiCF | 750 | 2.16 | 1.88 |
Fig. 36. SEM morphologies of the C/Cs with co-deposition of SiCNWs and CNTs by EPD for 120 s: (a) Cross-section morphology; (b) Surface morphology; (c) Magnification of (b) [233].
Fig. 37. SEM morphologies after oxidation of the SiC coated C/Cs without (a) and with (b) the co-deposition of SiCNWs and CNTs; (c) Magnification of (b); (d) XRD pattern of the coated C/Cs after oxidation [233].
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
SiC | - | - | 10 | 1373 | 15 | [ |
CNTs-SiCWs | - | 10 | 1373 | 0.7 | ||
SiC | - | CVR | 1 | 1673 | 1.72 | [ |
SiC/SiC | HMNR | CVR+CVD | 400 | 1673 | 1.67 | |
SiC | - | PC | 45 | 1773 K | ~1.35 | [ |
SiCNWs-CNTs | EPCD+PC | 45 | 1773 K | -0.03052 | ||
SiCNWs-CNTs | EPCD+PC | 100 | 1773 K | 1.08 |
Table 12. Summary of isothermal oxidation testing data of hybrid micro/nano multiscale routes reinforced coatings.
Coating materials | Toughening materials | Fabrication methods | Oxidation test | Refs. | ||
---|---|---|---|---|---|---|
Time (h) | Temperature (K) | Mass loss (%) | ||||
SiC | - | - | 10 | 1373 | 15 | [ |
CNTs-SiCWs | - | 10 | 1373 | 0.7 | ||
SiC | - | CVR | 1 | 1673 | 1.72 | [ |
SiC/SiC | HMNR | CVR+CVD | 400 | 1673 | 1.67 | |
SiC | - | PC | 45 | 1773 K | ~1.35 | [ |
SiCNWs-CNTs | EPCD+PC | 45 | 1773 K | -0.03052 | ||
SiCNWs-CNTs | EPCD+PC | 100 | 1773 K | 1.08 |
Coating materials | Toughening materials | Fabrication methods | Temperature (K) | Cycles | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | SiCNWs | - | 1773 | 25 | 2.75 | [ |
SiC | CNS-SiCNWs | - | 1773 | 25 | 2.38 | [ |
SiC/SiC | HMNR | CVR+CVD | 1673 | 34 | 1.67 | [ |
Table 13. Summary of thermal shock test data of hybrid micro/nano multiscale routes reinforced coatings.
Coating materials | Toughening materials | Fabrication methods | Temperature (K) | Cycles | Mass loss (%) | Refs. |
---|---|---|---|---|---|---|
SiC | SiCNWs | - | 1773 | 25 | 2.75 | [ |
SiC | CNS-SiCNWs | - | 1773 | 25 | 2.38 | [ |
SiC/SiC | HMNR | CVR+CVD | 1673 | 34 | 1.67 | [ |
Fig. 38. Fracture behavior of SiCNWs-reinforced CBCFCs. (a) SEM surface image of the composite at low magnification. (b) SEM image of the composite at a high magnification (insert shows high magnification of SiCNWs). (c) SiCNWs pull-out of the silicon oxycarbide (SiOC) ceramics. (d) SiCNWs bridging the carbon fibers and SiOC ceramics. (e) SEM image of carbon fibers pull-out of SiOC ceramics. (f) SEM image of the tensile fracture of carbon fibers and SiCNWs [234].
Fig. 39. Microstructure of different preforms: Distribution of SiCNWs on each direction (a) and single bundle (b) of carbon fiber cloth via electrophoretic deposition (EPD) with the magnified view (c). Microstructure of SiCNWs decorated with carbon nanosheet (CNSs) on carbon fibers (d) and the inset. EDS pattern of SiCNWs decorated with carbon nanosheet, elemental distribution of carbon (e) and silicon (f). Raman spectra of different carbon fibers preforms (g) [235].
[1] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI URL PMID |
[2] |
Q.B. Wen, Z.J. Yu, R. Riedel, Prog. Mater. Sci. 109 (2020) 100623.
DOI URL |
[3] | Y. Chen, C.Q. Hong, C.L. Hu, P. Hu, L. Li, J.C. Liu, Adv. Ceram. 38 (2017) 311. |
[4] |
W.G. Fahrenholtz, G. Hilmas, Scr. Mater. 129 (2017) 94-99.
DOI URL |
[5] | S.J. Park, Carbon/Carbon Composites 210 (2018) 292 Series in Materials Science. |
[6] |
Q. Song, Q. Shen, Q. Fu, H. Li, J. Mater. Sci. Technol. 35 (2019) 2799-2808.
DOI URL |
[7] | J.J. Sun, H.J. Li, L.Y. Han, Q. Song, J. Mater. Sci. Technol. 35 (2019) 383-393. |
[8] |
B. Li, H.J. Li, X.Y. Yao, Y.G. Chen, X. Hu, G.H. Feng, J.H. Lu, Corros. Sci. 175 (2020) 108895.
DOI URL |
[9] |
M. Natali, J.M. Kenny, L. Torre, Prog. Mater. Sci. 84 (2016) 192-275.
DOI URL |
[10] |
X.T. Shen, Z.Q. Shi, Z.G. Zhao, X. Wang, C.Y. Li, J.F. Huang, K.Z. Li, G. Liu, J. Eur. Ceram. Soc. 40 (2020) 5085-5093.
DOI URL |
[11] | X.R. Ren, Study On the Ultra High Temperature Ceramic Borides Modified Si- based coating Prepared By In-Situ Reaction Method, Northwestern Polytech- nical University, Xi’an, 2015 Ph.D Disertation https://kns.cnki.net/KCMS/detail/detail.aspx?filename=1016909333.nh&dbname=CDFDTEMP. |
[12] |
N.N. Yan, X.H. Shi, K. Li, Q.G. Fu, W. Xie, H.R. Zhang, Q. Song, Compos. Part B Eng. 154 (2018) 200-208.
DOI URL |
[13] |
X.C. Jin, X.L. Fan, C.S. Lu, T.J. Wang, J. Eur. Ceram. Soc. 38 (2018) 1-28.
DOI URL |
[14] |
S. Tang, C. Hu, J. Mater. Sci. Technol. 33 (2017) 117-130.
DOI URL |
[15] |
P. Zhang, Q.G. Fu, D. Hu, C.Y. Cheng, X.F. Zhu, Surf. Coat. Technol. 385 (2020) 125335.
DOI URL |
[16] |
M.D. Tong, Q.G. Fu, S. Yao, T. Feng, D. Hu, L. Zhou, J. Materiomics 6 (2020) 263-273.
DOI URL |
[17] |
G. Ivan, G. Boris, N. Aleksei, J. Alloys Compd. 767 (2018) 803-810.
DOI URL |
[18] |
C.Q. Fang, B.Y. Huang, X. Yang, A.H. Shi, Z. Zhang, J.R. Yi, Q.Z. Huang, Corros. Sci. 184 (2021) 109347.
DOI URL |
[19] |
G.H. Feng, H.J. Li, X.Y. Yao, H. Zhou, Y.L. Yu, J.H. Lu, J. Eur. Ceram. Soc. 41 (2021) 3207-3218.
DOI URL |
[20] | F. Zhang, W. Cui, B.B. Wang, B.H. Xu, X.H. Liu, X.H. Liu, Z.R. Jia, G.L. Wu, Com- pos. Part B Eng. 204 (2021) 108491. |
[21] |
L. Su, B.Y. Li, H.J. Wang, M. Niu, X.Y. Fan, J. Am. Ceram. Soc. 103 (2020) 3321-3329.
DOI URL |
[22] |
M. Patel, K. Saurabh, V.V. Prasad, Bull. Mater. Sci. 35 (2012) 63-73.
DOI URL |
[23] |
L. Zhou, Q.G. Fu, D. Hu, Y.L. Wei, M.D. Tong, J.P. Zhang, J. Eur. Ceram. Soc. 41 (2021) 73-83.
DOI URL |
[24] |
S. Tian, Y.L. Zhang, L. Zhou, S.L. Huang, J.J. Ren, J.C. Ren, S.Y. Zhang, H.J. Li, J. Eur. Ceram. Soc. 41 (2021) 194-203.
DOI URL |
[25] |
F. Zhou, Y.B. Cao, R.J. Liu, Y.F. Wang, L. Zuo, Mater. Rev. 30 (2016) 68-74.
DOI URL |
[26] |
M.D. Tong, Q.G. Fu, D. Hu, L. Zhou, T. Feng, J. Eur. Ceram. Soc. 41 (2021) 4067-4075.
DOI URL |
[27] |
Y.L. Xu, W. Sun, X. Xiong, F.Q. Liu, X.G. Luan, J. Mater. Sci. Technol. 35 (2019) 2785-2798.
DOI URL |
[28] |
L. Xu, J. Cheng, X.C. Li, Y. Zhang, Z. Fan, Y.Z. Song, Z.H. Feng, J. Am. Ceram. Soc. 101 (2018) 3830-3836.
DOI URL |
[29] |
Z.G. Gao, Z.R. Jia, K.K. Wang, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 402 (2020) 125951.
DOI URL |
[30] |
L. Zhuang, Q.G. Fu, J.P. Zhang, Y.Y. Guo, H.J. Li, Y.C. Shan, Ceram. Int. 41 (2015) 6956-6964.
DOI URL |
[31] | A.Z. Cai, L.J. Guo, C.H. Ma, H.J. Li, Carbon Tech. 34 (2015) 1-5. |
[32] |
S. Chen, W. Li, X. Li, W. Yang, Prog. Mater. Sci. 104 (2019) 138-214.
DOI URL |
[33] |
X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, P. Greil, Int. Mater. Rev. 62 (2017) 117-172.
DOI URL |
[34] |
X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 49 (2020) 301-331.
DOI URL PMID |
[35] |
C.V. Kumar, B. Kandasubramanian, Ind. Eng. Chem. Res. 58 (2019) 22663-22701.
DOI URL |
[36] |
Q.C. He, H.J. Li, X.M. Yin, C.C. Wang, J.H. Lu, Ceram. Int. 45 (2019) 20414-20426.
DOI URL |
[37] |
Y.Q. Fu, Y.L. Zhang, J. Zhang, T. Li, G.H. Chen, Ceram. Int. 46 (2020) 16142-16150.
DOI URL |
[38] |
A.E. Giannakopoulos, K. Breder, J. Am. Ceram. Soc. 74 (2010) 194-202.
DOI URL |
[39] |
P. Ying, Z. Peng, X. Ren, H. Rong, C. Wang, Z. Fu, Int. J. Refract. Met. Hard Mater. 34 (2012) 36-40.
DOI URL |
[40] |
W. Xie, Q.G. Fu, C.Y. Cheng, N.N. Yan, Ceram. Int. 46 (2020) 24371-24378.
DOI URL |
[41] |
P. Zhang, Q.G. Fu, C.Y. Cheng, X.F. Zhu, J.G. Huang, J.P. Zhang, W. Li, Surf. Coat. Technol. 403 (2020) 126418.
DOI URL |
[42] |
G.H. Liu, L.F. Cheng, X.G. Luan, J.X. Zhang, J. Mater. Sci. Technol. 35 (2001) 2957-2965.
DOI URL |
[43] |
X.F. Zhu, Y.L. Zhang, Y.Y. Su, Y.Q. Fu, P. Zhang, J. Eur. Ceram. Soc. 41 (2021) 114-120.
DOI URL |
[44] |
C.L. Hu, S. Pang, S.F. Tang, Corros. Sci. 94 (2015) 452-458.
DOI URL |
[45] |
D. Hu, Q.G. Fu, T.Y. Liu, M.D. Tong, J. Eur. Ceram. Soc. 40 (2020) 212-219.
DOI URL |
[46] |
J.J. Xu, W. Sun, Y.L. Xu, X. Xiong, N.J. Deng, H.B. Zhang, J. Yin, J. Eur. Ceram. Soc. 41 (2021) 38-53.
DOI URL |
[47] |
P. Song, P. Xiao, J.Y. Liu, Y.H. Wang, Carbon 147 (2019) 348-356.
DOI URL |
[48] | W. Nakao, Wiley Encyclopedia of Composites, John Wiley & Sons, Inc, 2011 https://doi.org/10.1002/9781118097298.weoc032. |
[49] |
H.J. Li, Q.G. Fu, X.H. Shi, K.Z. Li, Z.B. Hu, Carbon 44 (2006) 602-605.
DOI URL |
[50] | Y.H. Chu, Q.G. Fu, H.J. Li, K.Z. Li, J. Mater. Eng. 24 (2010) 86-91. |
[51] |
Z.J. Xu, W.D. Chi, H. Liu, J.M. Yu, X.K. Yang, Oxidation Protective Coat- ing on Carbon/Carbon Composite Prepared by Two-step Processes of Pack Cementation and Sol-gel, Hot Working Technology 41 (20) (2012) 107-110 https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=cjfd2012&filename=sjgy201220031&dbcode=cjfd, doi: 10.14158/j.cnki.1001-3814.2012.20.018.
DOI URL |
[52] | Q.G. Fu, H.J. Li, K.Z. Li, X.H. Shi, Z.B. He, M. Huang, Carbon 9 (2006) 1866-1869. |
[53] | Q.G. Fu, H.J. Li, K.Z. Li, Mater. Sci. Eng. A 445 (2007) 386-391. |
[54] |
Q.G. Fu, H.J. Li, X.H. Shi, Appl. Surf. Sci. 253 (2007) 3757-3760.
DOI URL |
[55] |
Z.L. Wen, X. Peng, Z. Li, Corros. Sci. 106 (2016) 179-187.
DOI URL |
[56] |
B. Du, C. Hong, Q. Qiang, S. Zhou, L. Chen, X. Zhang, Ceram. Int. 43 (2017) 9531-9537.
DOI URL |
[57] |
B. Xu, C. Hong, S. Zhou, J. Han, X. Zhang, Ceram. Int. 42 (2016) 9511-9518.
DOI URL |
[58] |
T. Wang, R.Y. Luo, Ceram. Int. 44 (2018) 12370-12380.
DOI URL |
[59] |
B. Du, C. Hong, S. Zhou, L. Chen, X. Zhang, J. Eur. Ceram. Soc. 36 (2016) 3303-3310.
DOI URL |
[60] |
K.Z. Li, X. Zhou, Z. Zhao, J. Solid State Chem. 258 (2018) 383-390.
DOI URL |
[61] |
F.X. Niu, Y.X. Wang, L.R. Ma., S.L. Fu, I. Abbas, C. Qu, C.G. Wang, J. Alloys Compd. 714 (2017) 270-277.
DOI URL |
[62] | J.H. Li, H.B. Zhang, X. Xiang, Mater. Sci. Eng. Powder Metall. 19 (2014) 39-43. |
[63] | Y. Wang, J. Huang, L. Cao, J.P. Wu, Acta Mater. Comp. Sin. 27 (2010) 58-61. |
[64] |
L. Zhou, J. Huang, H. Ouyang, L. Cao, W. Hao, X. Wang, J. Alloys Compd. 712 (2017) 288-295.
DOI URL |
[65] |
L. Cao, J. Liu, J. Huang, Z. Lei, Y. Xiang, X. Shen, Ceram. Int. 43 (2017) 16512-16517.
DOI URL |
[66] |
L. Wang, Q.G. Fu, F.L. Zhao, Intermetallics 94 (2018) 106-113.
DOI URL |
[67] |
N. Benchikh, F. Garrelie, C. Donnet, K. Wolski, R.Y. Fillit, F. Rogemond, J.L. Sub- til, J.N. Rouzaud, J.Y. Laval, Surf. Coat. Tech. 200 (2006) 6272-6278.
DOI URL |
[68] |
H. Jafari, N. Ehsani, S.A. Khalifeh-Soltani, M. Jalaly, Appl. Surf. Sci. 264 (2013) 128-132.
DOI URL |
[69] |
J. Pourasad, N. Ehsani, Z. Valefi, S.A. Khalifesoltani, Surf. Coat. Tech. 323 (2017) 58-64.
DOI URL |
[70] |
H.J. Li, Y.L. Zhang, Q.G. Fu, K.Z. Li, J. Wei, D.S. Hou, Carbon 45 (2007) 2704-2707.
DOI URL |
[71] |
Y.L. Zhang, H.J. Li, Q.G. Fu, K.Z. Li, Adv. Eng. Mater. 10 (2010) 986-989.
DOI URL |
[72] |
J.F. Huang, L. Miao, W. Bo, L.Y. Cao, C.K. Xia, J.P. Wu, Carbon 47 (2009) 1198-1201.
DOI URL |
[73] |
M. Liu, J.F. Huang, B. Wang, J. Inorg. Mater. 24 (2009) 1214-1218.
DOI URL |
[74] | B. Wang, J.F. Huang, M. Liu, K. Li, L. Cao, J.P. Wu, J. Chin. Ceram. Soc. 39 (2011) 318-324. |
[75] |
S.L. Wang, K.Z. Li, H.J. Li, Y.L. Zhang, Mater. Lett. 107 (2013) 99-102.
DOI URL |
[76] |
N. An, Effects of Nano-SiC Powder on the Densification Behavior and Abla- tion Property of C/C-SiC Composites, Synth. Mater. Aging Appl. 46 (2017) 42-46 https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=cjfd2017&filename=hoce201704010&dbcode=cjfq, doi: 10.16584/j.cnki.issn1671-5381.2017.04.010.
DOI URL |
[77] |
A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, Nature 423 (2003) 703.
DOI URL |
[78] |
S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55 (2010) 41-64.
DOI URL |
[79] |
J. Robertson, Mater. Today 7 (2004) 46-52.
DOI URL |
[80] |
J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’Ko, Carbon 44 (2006) 1624-1652.
DOI URL |
[81] |
S. Jiang, P. Hou, C. Liu, H.M. Cheng, J. Mater. Sci. Technol. 35 (2019) 2447-2462.
DOI URL |
[82] |
Q.M. Gong, L. Zhi, X.W. Zhou, J.J. Wu, Y. Wang, J. Liang, Carbon 43 (2005) 2426-2429.
DOI URL |
[83] |
J. Chen, X. Xiong, P. Xiao, Mater. Chem. Phys. 116 (2009) 57-61.
DOI URL |
[84] | P.J.F. Harris, Int.Mater. Rev. 49 (2004) 31-43. |
[85] |
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 35 (2010) 357-401.
DOI URL |
[86] |
X.M. Yin, H.J. Li, L.Y. Han, R.M. Yuan, J.H. Lu, J. Colloid Interface Sci. 577 (2020) 4 81-4 93.
DOI URL |
[87] |
Q.L. Shen, H.J. Li, W. Li, Q. Song, J. Alloys Compd. 738 (2018) 49-55.
DOI URL |
[88] |
G.B. Zheng, H. Mizuki, H. Sano, Y. Uchiyama, Carbon 46 (2008) 1808-1811.
DOI URL |
[89] |
G.B. Zheng, H. Sano, Y. Uchiyama, Compos. Part B Eng. 42 (2011) 2158-2162.
DOI URL |
[90] |
L. Feng, K.Z. Li, Z.S. Si, H.J. Li, Q. Song, Y.C. Shan, S.Q. Wen, Ceram. Int. 40 (2014) 13683-13689.
DOI URL |
[91] |
Q.G. Fu, L. Zhuang, Q.W. Ren, L. Feng, H.J. Li, Y.A. Guo, J. Materiomics 1 (2015) 245-252.
DOI URL |
[92] |
Q.G. Fu, L. Zhuang, H.J. Li, L. Feng, J.Y. Jing, B.Y. Tan, J. Alloys Compd. 645 (2015) 206-212.
DOI URL |
[93] |
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353-389.
DOI URL |
[94] |
B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Nature 449 (2007) 885-889.
DOI URL |
[95] |
J. Yan, Z.G. Chen, J.Y. Jiang, L. Tan, X.C. Zeng, Adv. Mater. 21 (2009) 314-319.
DOI URL |
[96] |
E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971-1975.
DOI URL |
[97] |
Y. Wang, H.Z. Wu, J. Eur. Ceram. Soc. 32 (2012) 3509-3519.
DOI URL |
[98] |
F.L. Zhao, Q.G. Fu, L. Wang, Y. Liu, Mat. Sci. Eng. A Struct. 703 (2017) 137-143.
DOI URL |
[99] |
W. Yang, H. Araki, A. Kohyama, S. Thaveethavorn, H. Suzuki, T.J. Noda, J. Am. Ceram. Soc. 87 (2010) 1720-1725.
DOI URL |
[100] |
J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, X.J. Zhang, Ceram. Int. 40 (2014) 40 01-40 07.
DOI URL |
[101] | J. Prakash, R. Venugopalan, B.M. Tripathi, S.K. Ghosh, J.K. Chakravartty, A.K. Tyagi, Prog. Solid State. Chem. 43 (2015) 8-122. |
[102] |
Y. Chu, H.J. Li, Q.G. Fu, L.H. Qi, Z.W. Xu, X. Zou, J. Am. Ceram. Soc. 95 (2012) 3691-3697.
DOI URL |
[103] |
Q.G. Fu, B.Y. Tan, L. Zhuang, J.Y. Jing, Mat. Sci. Eng. A Struct. 672 (2016) 121-128.
DOI URL |
[104] | Q. Song, L. Zhuang, Q.G. Fu, in: Nanotube/Nanowire-Toughened Car- bon/Carbon Composites and Their Coatings. Nanomaterials in Rocket Propul- sion Systems, Elsevier, 2019, pp. 495-528. |
[105] |
G. Attolini, F. Rossi, M. Negri, Mater. Lett. 124 (2014) 169-172.
DOI URL |
[106] | G. Gundiah, G.V. Madhav, A. Govindaraj, M.M. Seikh, C.N.R. Rao, J.Mater. Chem. 12 (2002) 1606-1611. |
[107] | H. Ye, N. Titchenal, Y. Gogotsi, F. Ko, Adv.Mater. 17 (2010)1531-1535. |
[108] |
Y. Liu, Q.G. Fu, H.J. Lin, B.B. Wang, L. Li, Adv. Appl. Ceram. 117 (2018) 23-29.
DOI URL |
[109] |
H.J. Lin, H.J. Li, Q.L. Shen, X.H. Shi, X.F. Tian, L.J. Guo, Mater. Lett. 212 (2018) 86-89.
DOI URL |
[110] |
S.Q. Wen, K.Z. Li, S. Qiang, Y.C. Shan, Y.Y. Li, H.J. Li, J. Alloys Compd. 618 (2015) 336-342.
DOI URL |
[111] |
Q.G. Fu, X.Y. Nan, X. Chen, W.L. Wang, H.J. Li, Y.Y. Li, L.T. Jia, Mater. Des. 80 (2015) 137-143.
DOI URL |
[112] |
Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, J. Wei, Z.B. Hu, Mater. Chem. Phys. 100 (2006) 108-111.
DOI URL |
[113] |
J. Men, Y. Liu, R. Luo, W. Li, L. Cheng, L. Zhang, J. Eur. Ceram. Soc. 36 (2016) 3615-3625.
DOI URL |
[114] | P. Hu, S. Dong, X. Zhang, K. Gui, G. Chen, Z. Hu, Sci. Rep. UK 7 (2017) 3011. |
[115] |
W. Han, S. Fan, Q. Li, W. Liang, B. Gu, D. Yu, Chem. Phys. Lett. 265 (1997) 374-378.
DOI URL |
[116] |
R.B. Wu, G.Y. Yang, Y. Pan, J.J. Chen, Appl. Phys. A 86 (2007) 271-274.
DOI URL |
[117] |
W. Khongwong, K. Yoshida, T. Yano, Mater. Sci. Eng. B 173 (2010) 117-121.
DOI URL |
[118] | K. Senthil, K. Yong, Phys. Mater. Chem. Phys. 112 (2008) 88-93. |
[119] |
H. Liu, Z. Huang, M. Fang, Y.G. Liu, X.J. Wu, J. Cryst. Growth 419 (2015) 20-24.
DOI URL |
[120] |
H. Huang, J.T. Fox, F.S. Cannon, Ceram. Int. 37 (2011) 1063-1072.
DOI URL |
[121] |
J. Prakash, K. Dasgupta, B.M. Tripathi, J. Bahadur, S.K. Ghosh, J.K. Chakravartty, J. Mater. Sci. 49 (2014) 6784-6792.
DOI URL |
[122] |
M. Hui, S. Farhan, D. Han, G. Liu, W. Zhao, G.J. Zhao, Ceram. Int. 42 (2016) 4723-4733.
DOI URL |
[123] |
S. Farhan, R. Wang, K.J. Li, Ceram. Int. 42 (2016) 11330-11340.
DOI URL |
[124] | W. Yang, H. Araki, S. Thaveethavorn, A. Kohyama, J.N. Yu, H. Suzuki, T. Noda, Mater. Sci.Forum 475-479 (2005) 1009-1012. |
[125] |
Y.H. Chu, S.Y. Jing, J.K. Chen, Ceram. Int. 44 (2018) 6681-6685.
DOI URL |
[126] | L. Latu-Romain, M. Ollivier, John Wiley & Sons, 2015. |
[127] |
M.Z. Wei, B. Yang, X.Y. Zhong, Z. Feng, J.Y. Li, Y.F. Zhang, Appl. Surf. Sci. 252 (2006) 5143-5148.
DOI URL |
[128] |
T. Li, Y.L. Zhang, S. Jia, J.C. Ren, L.J. Zhang, J. Am. Ceram. Soc. 101 (2018) 1371-1380.
DOI URL |
[129] |
Z. Dong, J. Meng, H. Zhu, G. Yuan, Y. Cong, J. Zhang, A. Westwood, Ceram. Int. 43 (2017) 11006-11014.
DOI URL |
[130] |
J.H. Li, Y.L. Zhang, Y.L. Kong, H. Lin, C.Q. Jin, Z.J. Xi, Vacuum 146 (2017) 87-92.
DOI URL |
[131] | X. Zou, L. Ji, X. Lu, Z.J. Zhou, Sci. Rep. UK 7 (2017) 9978. |
[132] |
W. Li, H.J. Guo, Mater. Lett. 215 (2018) 75-78.
DOI URL |
[133] |
Q.G. Fu, H.J. Li, Z.Z. Zhang, X.R. Zeng, K.Z. Li, Corros. Sci. 52 (2010) 1879-1882.
DOI URL |
[134] |
Y.H. Chu, Q.G. Fu, C.W. Cao, Surf. Coat. Technol. 205 (2010) 413-418.
DOI URL |
[135] |
Y. Chu, Q.G. Fu, H.J. Li, K.Z. Li, X. Zou, C.G. Gu, Corros. Sci. 53 (2011) 3048-3053.
DOI URL |
[136] |
Y.H. Chu, Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, W. Xue, G.N. Shang, J. Am. Ceram. Soc. 95 (2012) 739-745.
DOI URL |
[137] |
X.F. Qiang, H.J. Li, Y.L. Zhang, Z.Z. Wang, Z.X. Ba, X.B. Zhang, Surf. Coat. Technol. 307 (2016) 91-98.
DOI URL |
[138] |
J.Y. Jing, Q.G. Fu, R.M. Yuan, Surf. Eng. 34 (2018) 47-53.
DOI URL |
[139] |
Y.L. Zhang, P.F. Zhang, J.C. Ren, L.L. Zhang, J.P. Zhang, Ceram. Int. 42 (2016) 12573-12580.
DOI URL |
[140] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, B.B. Wei, Corros. Sci. 55 (2012) 394-400.
DOI URL |
[141] |
X.F. Qiang, H.J. Li, Y.L. Zhang, D.J. Yao, L.J. Guo, J. Wei, Corros. Sci. 59 (2012) 343-347.
DOI URL |
[142] |
L.L. Zhang, H.J. Li, K.Z. Li, S.Y. Zhang, Q.G. Fu, Y.L. Zhang, J.H. Lu, W. Li, Appl. Surf. Sci. 313 (2014) 85-92.
DOI URL |
[143] |
X.F. Qiang, H.J. Li, Y.F. Liu, N. Zhang, X. Li, S. Tian, Y. Cong, Ceram. Int. 44 (2018) 16227-16236.
DOI URL |
[144] |
L. Li, H.J. Li, Y.Y. Li, X.M. Yin, Q.L. Shen, Q.G. Fu, Appl. Surf. Sci. 349 (2015) 465-471.
DOI URL |
[145] |
J.F. Huang, L. Zhou, L.Y. Cao, H.B. Ouyang, H. Wei, C.Y. Li, J. Fei, Corros. Sci. 107 (2016) 85-95.
DOI URL |
[146] |
Y.H. Chu, H.J. Li, L. Li, L.H. Qi, Corros. Sci. 84 (2014) 204-208.
DOI URL |
[147] | J. Fan, P.K. Chu, Springer, 2014. |
[148] |
M. Zhang, J. Zhao, Z.J. Li, H.Y. Yu, Y.Q. Wang, A.L. Meng, Q.D. Li, J. Solid State Chem. 243 (2016) 247-252.
DOI URL |
[149] |
Y.H. Chu, H.J. Li, Y.J. Wang, L.H. Qi, Q.G. Fu, Surf. Coat. Technol. 235 (2013) 577-581.
DOI URL |
[150] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, L. Lu, Corros. Sci. 70 (2013) 11-16.
DOI URL |
[151] |
H.J. Li, X. Yang, Y.H. Chu, L. Lu, Q.G. Fu, L.H. Qi, Corros. Sci. 74 (2013) 419-423.
DOI URL |
[152] |
Y.H. Chu, H.J. Li, H.J. Luo, L. Li, L.H. Qi, Corros. Sci. 92 (2015) 272-279.
DOI URL |
[153] |
H.J. Li, Y.J. Wang, Q.G. Fu, Y.H. Chu, J. Mater. Sci. Technol. 31 (2015) 70-76.
DOI URL |
[154] |
J.P. Zhang, Q.G. Fu, J.L. Qu, Ceram. Int. 42 (2016) 14021-14027.
DOI URL |
[155] |
L. Zhuang, Q.G. Fu, T.Y. Liu, B.Y. Tan, J. Alloys Compd. 675 (2016) 348-354.
DOI URL |
[156] |
Q.G. Fu, J.Y. Jing, B.Y. Tan, R.M. Yuan, L. Zhuang, L. Li, Corros. Sci. 111 (2016) 259-266.
DOI URL |
[157] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, L. Lu, T.Y. Liu, Corros. Sci. 70 (2013) 285-289.
DOI URL |
[158] |
Y.H. Chu, H.J. Li, Q.G. Fu, H.P. Wang, X.H. Hou, X. Zou, G.N. Shang, Carbon 50 (2012) 1280-1288.
DOI URL |
[159] |
Y.H. Chu, H.J. Li, Q.G. Fu, X.H. Shi, L.H. Qi, B.B. Wei, Corros. Sci. 58 (2012) 315-320.
DOI URL |
[160] |
C.Y. Cheng, H.J. Li, Q.G. Fu, L. Li, L.P. Guo, X.M. Yin, X.F. Tian, J. Am. Ceram. Soc. 101 (2018) 3694-3702.
DOI URL |
[161] |
L. Zhuang, Q.G. Fu, X. Yu, J. Eur. Ceram. Soc. 38 (2018) 2808-2814.
DOI URL |
[162] |
L. Zhuang, Q.G. Fu, H.J. Li, Carbon 124 (2017) 675-684.
DOI URL |
[163] |
L. Zhuang, Q.G. Fu, W.H. Ma, Y.Y. Zhang, N.N. Yan, Q. Song, Q. Zhang, Corros. Sci. 148 (2019) 307-316.
DOI URL |
[164] |
A. Sayir, J. Mater. Sci. 39 (2004) 5995-6003.
DOI URL |
[165] |
C. Verdon, O. Szwedek, A. Allemand, S. Jacques, Y.L. Petitcorps, P. David, J. Eur. Ceram. Soc. 34 (2014) 879-887.
DOI URL |
[166] | O. Cedillos-Barraza, D. Manara, K. Boboridis, T. Watkins, S. Grasso, D.D. Jayaseelan, Sci. Rep. UK 6 (2016) 37962. |
[167] | C.Y. Li, K.Z. Li, H.B. Ouyang, H.J. Li, Rare Metal Mater. Eng. 35 (2006) 365. |
[168] |
M.D. Sacks, C.A. Wang, Z. Yang, A. Jain, J. Mater. Sci. 39 (2004) 6057-6066.
DOI URL |
[169] |
H.I. Yoo, H.S. Kim, B.G. Hong, I.C. Sihn, K.H. Lim, B.J. Lim, J. Eur. Ceram. Soc. 36 (2016) 1581-1587.
DOI URL |
[170] |
X.M. Yin, H.J. Li, Y.Q. Fu, R.M. Yuan, J.H. Lu, Chem. Eng. J. 392 (2020) 124820.
DOI URL |
[171] |
J.H. Li, Y.L. Zhang, Y.Q. Fu, T. Fei, Z.Z. Xi, Ceram. Int. 44 (2018) 13335-13340.
DOI URL |
[172] |
J.C. Ren, Y.T. Duan, C.F. Lv, J.Y. Luo, Y.L. Zhang, Y.Q. Fu, Ceram. Int. 47 (6) (2021) 7853-7863.
DOI URL |
[173] |
Y.L. Zhang, J.C. Ren, S. Tian, H.J. Li, Z.X. Hu, Appl. Surf. Sci. 311 (2014) 208-213.
DOI URL |
[174] |
Y.L. Zhang, J.C. Ren, S. Tian, H.J. Li, X.R. Ren, Z.X. Hu, Corros. Sci. 90 (2015) 554-561.
DOI URL |
[175] |
J.C. Ren, Y.L. Zhang, H. Hu, T. Fei, H.J. Li, Appl. Surf. Sci. 360 (2016) 970-978.
DOI URL |
[176] |
J.C. Ren, Y.L. Zhang, H. Hu., P.F. Zhang, T. Fei, L. Zhang, Ceram. Int. 42 (2016) 14518-14525.
DOI URL |
[177] |
J.C. Ren, Y.L. Zhang, P.F. Zhang, T. Li, J. Li, Y. Yang, J. Eur. Ceram. Soc. 37 (2017) 2759-2768.
DOI URL |
[178] |
J.C. Ren, Y.L. Zhang, P.F. Zhang, T. Li, H. Hu, Surf. Coat. Technol. 311 (2017) 191-198.
DOI URL |
[179] |
R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Prog. Mater. Sci. 72 (2015) 1-60.
DOI URL |
[180] |
M.K. Yeh, N.H. Tai, Y.J. Lin, Compos. Part A Appl. 39 (2008) 677-684.
DOI URL |
[181] |
G.D. Zhan, J.D. Kuntz, J. Wan, A.K. Mukherjee, Nat. Mater. 2 (2003) 38-42.
DOI URL |
[182] |
Z. Eslami, F. Yazdani, M.A. Mirzapour, Compos. Part A Appl. 72 (2015) 22-31.
DOI URL |
[183] |
G. Lubineau, A. Rahaman, Carbon 50 (2012) 2377-2395.
DOI URL |
[184] |
C. Yan, R. Liu, Y. Cao, C. Zhang, D. Zhang, Corros. Sci. 86 (2014) 131-141.
DOI URL |
[185] |
L. Xue, Z.A. Su, X. Yang, D. Huang, T. Yin, C. Liu, Q. Hunag, Corros. Sci. 94 (2015) 165-170.
DOI URL |
[186] |
W. Tan, K.Z. Li, H.J. Li, J. Zhang, C. Ni, A.Z. Cao, C. Ma, Vacuum 116 (2015) 124-129.
DOI URL |
[187] |
K. Krnel, Z. Stadler, T. Kosma ˇc, J. Eur. Ceram. Soc. 27 (2007) 1211-1216.
DOI URL |
[188] |
A. Centeno, R. Santamaría, M. Granda, R. Menéndez, C. Blanco, Mater. Chem. Phys. 122 (2010) 102-107.
DOI URL |
[189] |
C.Z. Kong, X.Q. Gao, Q.G. Guo, J.R. Song, Y. Yang, Carbon 30 (2015) 451-458.
DOI URL |
[190] | Q. Zhen, F. Lu, S.L. Song, Chin. J. Eng. 39 (2017) 81-87. |
[191] | M. Gubernat, T. Lis, J. Tomala, J. Kawala, A. Fraczek-Szczypta, S. Blazewicz, J. Nanomater. 2017 (2017) 1-6. |
[192] |
D. Mikociak, A. Rudawski, S. Blazewicz, Mat. Sci. Eng. A 716 (2018) 220-227.
DOI URL |
[193] |
I. Srikanth, N. Padmavathi, K. Suresh, P. Ghosal, A. Kumar, C. Subrahmanyam, Compos. Sci. Technol. 80 (2013) 1-7.
DOI URL |
[194] |
A. Nisar, S. Ariharan T., N.S. Venkateswaran, K. Balani, Carbon 111 (2017) 269-282.
DOI URL |
[195] |
X.F. Lu, P. Xiao, J. Chen, Y. Long, Corros. Sci. 55 (2012) 20-25.
DOI URL |
[196] |
K.Z. Li, Q. Song, Q. Qiang, C. Ren, Corros. Sci. 60 (2012) 314-317.
DOI URL |
[197] |
X.F. Lu, P. Xiao, Ceram. Int. 40 (2014) 10705-10709.
DOI URL |
[198] |
G. Kou, L.J. Guo, Z.Q. Li, J. Peng, J. Tian, C.X. Huo, J. Alloys Compd. 694 (2017) 1054-1060.
DOI URL |
[199] |
Q.L. Shen, H.J. Li, F.L. Zhao, S. Qiang, Q.G. Fu, Corros. Sci. 132 (2018) 204-213.
DOI URL |
[200] | X.T. Shen, K.Z. Li, H.J. Li, Q.G. Fu, S.P. Li, F. Deng, Corros. Sci. 53 (2011) 105 012. |
[201] |
Z.G. Zhao, K.Z. Li, W. Li, Q. Liu, G. Kou, Y.L. Zhang, Ceram. Int. 44 (2018) 17345-17358.
DOI URL |
[202] |
Z.K. Chen, X. Xiong, G.D. Li, Y.L. Wang, Appl. Surf. Sci. 255 (2009) 9217-9223.
DOI URL |
[203] |
H.J. Li, D. Yao, Q.G. Fu, L. Lei, Y.L. Zhang, X.Y. Yao, Carbon 52 (2013) 418-426.
DOI URL |
[204] |
Y. Zeng, X. Xiong, G. Li, Z. Chen, W. Sun, D. Wang, Carbon N Y 54 (2013) 300-309.
DOI URL |
[205] |
Y. Zeng, X. Xiong, G. Li, Z. Chen, W. Sun, D. Wang, Carbon 63 (2013) 92-100.
DOI URL |
[206] |
J. Yin, H.B. Zhang, X. Xiong, B.Y. Huang, J.L. Zuo, Appl. Surf. Sci. 255 (2009) 5036-5040.
DOI URL |
[207] |
L. Liu, H.J. Li, W. Feng, X.H. Shi, K.Z. Li, L.J. Guo, Corros. Sci. 74 (2013) 159-167.
DOI URL |
[208] |
Y. Chang, W. Sun, X. Xiong, Z. Chen, Y. Wang, Z. Hao, J. Eur. Ceram. Soc. 37 (2017) 859-864.
DOI URL |
[209] |
C.Y. Li, K.Z. Li, H.B. Ouyang, J.F. Huang, H.J. Li, Y.L. Zhang, Corros. Sci. 102 (2016) 405-412.
DOI URL |
[210] |
G. Kou, L.J. Guo, H.J. Li, J. Alloys Compd. 723 (2017) 1132-1141.
DOI URL |
[211] |
Y. Liu, Q.G. Fu, J.P. Zhang, L. Li, L. Zhuang, J. Eur. Ceram. Soc. 36 (2016) 3815-3821.
DOI URL |
[212] |
K.Z. Li, T. Duan, J.P. Zhang, N.K. Liu, M.Y. Zhang, J. Mater. Sci. Technol. 33 (2017) 71-78.
DOI URL |
[213] |
R. Kannan, L. Rangaraj, Ceram. Int. 43 (2017) 2625-2631.
DOI URL |
[214] |
J. Li, J. Sha, J. Dai, Z. Lv, J. Shao, S. Wang, Z. Zhang, Carbon 118 (2017) 148-155.
DOI URL |
[215] |
W.Y. Wang, Q.G. Fu, B.Y. Tan, J. Alloys Compd. 726 (2017) 866-874.
DOI URL |
[216] |
S. Wen, K.Z. Li, S. Qiang, Y.C. Shan, Y. Li, H.J. Li, H.L. Ma, J. Alloys Compd. 618 (2015) 336-342.
DOI URL |
[217] |
X. Yang, Q.Z. Huang, Z. Su, X. Chang, L. Xue, P. Zhong, Corros. Sci. 107 (2016) 9-20.
DOI URL |
[218] | Q. Song, F. Ye, L. Kong, Q.L. Shen, L.Y. Han, L. Feng, G.J. Yu, Y.Y. Pan, H.J. Li, Adv. Funct. Mater. 30 (2020) 20 0 0475. |
[219] | M.I. Katsnelson, Mater. Today 10 (2007) 20-27. |
[220] |
A.K. Geim, Science 324 (2009) 1530-1534.
DOI URL PMID |
[221] |
X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41 (2012) 666-686.
DOI URL PMID |
[222] |
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Int. Mater. Rev. 62 (2016) 241-302.
DOI URL |
[223] |
W. Yang, R.Y. Luo, Z.H. Hou, Materials 9 (2016) 492.
DOI URL |
[224] |
B. Gao, R.L. Zhang, M.S. He, L.C. Sun, C.G. Wang, L. Liu, L.F. Zhao, H.Z. Cui, A.P. Cao, Compos. Part A Appl. 90 (2016) 433-440.
DOI URL |
[225] |
Y.Y. Li, L.J. Guo, Y.W. Wang, H.J. Li, Q. Song, J. Mater. Sci. Technol. 32 (2016) 419-424.
DOI URL |
[226] | Z.X. Jiang, J.B. Li, D.W. Zhang, A method of interfacial modification of carbon/carbon composites with graphene/polymer coating, CN102795873A. 2012. |
[227] | X. Zhou, S.F. Tang, J. Deng, Chinese J. Mater. Res. 20 (2006) 148-152. |
[228] |
Y.Z. Zuo, H. Li, S.L. Wang, J. Inorg. Mater. 32 (2017) 1141-1146.
DOI URL |
[229] |
B. Du, C.Q. Hong, X.H. Zhang, A.Z. Wang, Y.Q. Sun, Ceram. Int. 44 (2018) 3505-3510.
DOI URL |
[230] | J. Li, X. Zhang, J.Q. Liao, Z.J. Tan, Mater. Sci. Eng. Powder Metall. 15 (2010) 277-282. |
[231] |
X.F. Qiang, H.J. Li, Y.L. Zhang, Z.Z. Wang, Z.X. Ba, J. Alloys Compd. 676 (2016) 245-250.
DOI URL |
[232] |
X. Yang, Q.Z. Huang, Z.A. Su, L.Y. Chai, X.F. Wang, L.P. Zhou, Ceram. Int. 39 (2013) 5053-5062.
DOI URL |
[233] |
C.X. Huo, L.J. Guo, Y.Y. Li, C.C. Wang, L. Feng, N.K. Liu, Ceram. Int. 43 (2017) 1722-1730.
DOI URL |
[234] |
B. Du, C.Q. Hong, X.H. Zhang, J.Z. Wang, Q. Qu, J. Eur. Ceram. Soc. 38 (2018) 2272-2278.
DOI URL |
[235] |
H. Wang, H.J. Li, X.S. Liu, N. Li, Q. Song, Ceram. Int. 45 (2019) 2521-2529.
DOI URL |
[236] |
T.Q. Hou, Z.R. Jia, B.B. Wang, H.B. Li, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 414 (2021) 128875.
DOI URL |
[237] |
C.X. Wang, B.B. Wang, X. Cao, J.W. Zhao, L. Chen, L.G. Shan, H.N. Wang, G.L. Wu, Compos. Part B Eng. 205 (2021) 108529.
DOI URL |
[238] |
J.W. Wang, B.B. Wang, Z. Wang, L. Chen, C.H. Gao, B.H. Xu, Z.R. Jia, G.L. Wu, J. Colloid Interface Sci. 586 (2021) 479-490.
DOI URL |
[239] |
Y. Zeng, D.N. Wang, X. Xiong, X. Zhang, P.J. Withers, W. Sun, M. Smith, M.W. Bai, P. Xiao, Nat. Commun. 8 (2017) 15836.
DOI URL PMID |
[240] |
B.S. Xu, Y.M. An, P. Wang, X.X. Jin, G.D. Zhao, Ceram. Int. 43 (2017) 783-790.
DOI URL |
[241] |
J. Zhang, Y.L. Zhang, Y.Q. Fu, D. Hu, J.C. Meng, T. Li, J. Eur. Ceram. Soc. 41 (2021) 1769-1778.
DOI URL |
[242] |
Q. Li, J. Li, G.Q. He, P.J. Liu, Carbon 67 (2014) 140-145.
DOI URL |
[243] |
Y. Liu, Q.G. Fu, B.B. Wang, Y.W. Guan, Y. Liu, J. Alloys Compd. 727 (2017) 135-145.
DOI URL |
[1] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[2] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[3] | Yunsong Niu, Lingling Xing, Feng Yang, Huawei Li, Minghui Chen, Shenglong Zhu, Fuhui Wang. Phase structure of sputtered Ta coating and its ablation behavior by laser pulse heating (LPH) [J]. J. Mater. Sci. Technol., 2021, 65(0): 7-17. |
[4] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[5] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[6] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[7] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[8] | Yaqun Xu, Yu Fu, Juan Li, Wenlong Xiao, Xinqing Zhao, Chaoli Ma. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 147-156. |
[9] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[10] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[11] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[12] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[13] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[14] | Yifei Wang, Jing Zhang, Kangmei Li, Jun Hu. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser [J]. J. Mater. Sci. Technol., 2021, 94(0): 136-146. |
[15] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||