J. Mater. Sci. Technol. ›› 2022, Vol. 114: 233-239.DOI: 10.1016/j.jmst.2021.12.005
• Research Article • Previous Articles Next Articles
Jie Wena, Zihao Songa, Jiabao Dinga, Feihong Wangb, Hongpeng Lia,*(), Jinyong Xua, Chao Zhanga
Received:
2021-09-24
Revised:
2021-12-18
Accepted:
2021-12-20
Published:
2022-07-01
Online:
2022-01-19
Contact:
Hongpeng Li
About author:
* lihongpeng@yzu.edu.cn (H. Li).Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature[J]. J. Mater. Sci. Technol., 2022, 114: 233-239.
Fig. 2. TEM images of (a) Ti3C2Tx, (b) Ti3C2Tx-derived TiO2, and (c) Ag5%@TiO2 nanocomposite nanosheets. AFM images and height profiles of (d) Ti3C2Tx, (e) Ti3C2Tx-derived TiO2, and (f) Ag5%@TiO2 nanocomposite nanosheets on a SiO2/Si substrate. (g) HRTEM image of the Ag5%@TiO2 nanocomposite. (h) EDS spectrum and (i) elemental distribution of the Ag5%@TiO2 nanocomposite.
Fig. 3. (a) XRD patterns of the Ti3C2Tx, Ti3C2Tx-derived TiO2, and the Ag@TiO2 nanocomposite. (b) XPS survey spectrum of the Ag@TiO2 nanocomposite. High-resolution XPS spectra of (c) Ti 2p and (d) Ag 3d for the Ag@TiO2 nanocomposite.
Fig. 4. (a) Real-time sensing response of Ti3C2Tx-derived TiO2 and Ag5%@TiO2 gas sensors upon NH3 exposure with concentrations ranging from 5 to 50 ppm. (b) Comparison of gas response as a function of NH3 gas concentrations for Ti3C2Tx-derived TiO2 and the Ag5%@TiO2 sensor. (c) Gas-sensing performance in comparison with other state-of-the-art NH3 sensors. (d) Linear relationship of the logarithm of sensor response (R) and the logarithm of the concentration of NH3 (C) for Ag5%@TiO2 sensors. (e) Response and recovery times calculated for 25 ppm NH3. (f) Cycling performance (repeatability) and (g) long-term stability of the response of the Ag5%@TiO2 gas sensors to 5 ppm NH3. (h) Selectivity test of the Ag5%@TiO2 sensors upon exposure to various gases at 25 ppm. (i) Evolution of responses of Ag@TiO2 sensors to 25 ppm NH3 as a function of RH (30%-90%).
Fig. 5. Enhanced sensing mechanism of the Ag@TiO2 heterostructure. (a) Energy band diagrams and electron transfer of the Ag@TiO2 nanocomposite in air and NH3, exhibiting the change of the depletion layer with the interaction between adsorbed oxygen species and NH3 molecules. (b) Schematic diagrams of the spillover effect of AgNPs.
[1] |
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Chem. Rev. 119 (2019) 478-598.
DOI URL |
[2] |
J. Dai, O. Ogbeide, N. Macadam, Q. Sun, W. Yu, Y. Li, B.L. Su, T. Hasan, X. Huang, W. Huang, Chem. Soc. Rev. 49 (2020) 1756-1789.
DOI URL |
[3] | M.X. Liu, X. Huang, Y. Song, J. Tang, J.J. Cao, X.Y. Zhang, Q. Zhang, S.X. Wang, T.T. Xu, L. Kang, X.H. Cai, H.S. Zhang, F.M. Yang, H.B. Wang, J.Z. Yu, A. Lau, L.Y. He, X.F. Huang, L. Duan, A.J. Ding, L.K. Xue, J. Gao, B. Liu, T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 7760-7765. |
[4] |
J.M. He, X.J. Yan, A. Liu, R. You, F.M. Liu, S.Q. Li, J. Wang, C.Q. Wang, P. Sun, X. Yan, B.N. Kang, J.H. He, Y. Wang, G.Y. Lu, J. Mater. Chem. A 7 (2019) 4744-4750.
DOI URL |
[5] |
M. Wu, M. He, Q.K. Hu, Q.H. Wu, G. Sun, L.L. Xie, Z.Y. Zhang, Z.G. Zhu, A.G. Zhou, ACS Sens. 4 (2019) 2763-2770.
DOI URL |
[6] | S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Nano Energy 79 (2021) 105369. |
[7] | Z.B. Zhang, T. Xue, X.Y. Jin, Sci. Total Environ. 741 (2020) 140244. |
[8] |
S.Q. Li, A. Liu, Z.J. Yang, L.P. Zhao, J. Wang, F.M. Liu, R. You, J.M. He, C.L. Wang, X. Yan, P. Sun, X.S. Liang, G.Y. Lu, Sens. Actuators B-Chem. 289 (2019) 252-259.
DOI URL |
[9] |
Y.K. Jo, S.Y. Jeong, Y.K. Moon, Y.M. Jo, J.W. Yoon, J.H. Lee, Nat. Commun. 12 (2021) 4955.
DOI URL |
[10] |
A. Dey, Mater. Sci. Eng. B 229 (2018) 206-217.
DOI URL |
[11] |
I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Sens. Actuators B-Chem. 220 (2015) 534-548.
DOI URL |
[12] | C. Yu, J.H. He, X.F. Cheng, H.Z. Lin, H. Yu, J.M. Lu, Angew. Chem.-Int. Ed. 60 (2021) 15328-15334. |
[13] | M.S. Yao, W.H. Li, G. Xu, Coord. Chem. Rev. 426 (2021) 213479. |
[14] | X. Liu, T. Ma, N. Pinna, J. Zhang, Adv. Funct. Mater. 27 (2017) 1702168. |
[15] |
Z.J. Li, Y.W. Huang, S.C. Zhang, W.M. Chen, Z. Kuang, D.Y. Ao, W. Liu, Y.Q. Fu, J. Hazard. Mater. 300 (2015) 167-174.
DOI URL |
[16] |
D. Degler, U. Weimar, N. Barsan, ACS Sens. 4 (2019) 2228-2249.
DOI URL |
[17] |
Y.Y. Jian, W.W. Hu, Z.H. Zhao, P.F. Cheng, H. Haick, M.S. Yao, W.W. Wu, Nano-Micro Lett. 12 (2020) 71.
DOI URL |
[18] |
Z.J. Wang, F. Wang, A. Hermawan, Y. Asakura, T. Hasegawa, H. Kumagai, H. Kato, M. Kakihana, J. Zhu, S. Yin, J. Mater. Sci. Technol. 73 (2021) 128-138.
DOI URL |
[19] |
A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 372 (2021) eabf1581.
DOI URL |
[20] |
S.N. Shuvo, A .M.U. Gomez, A. Mishra, W.Y. Chen, A.M. Dongare, L. Stanciu, ACS Sens. 5 (2020) 2915-2924.
DOI URL |
[21] |
Y.Y. Pei, X.L. Zhang, Z.Y. Hui, J.Y. Zhou, X. Huang, G.Z. Sun, W. Huang, ACS Nano 15 (2021) 3996-4017.
DOI URL |
[22] | H.L. Tai, Z.H. Duan, Z.Z. He, X. Li, J.L. Xu, B.H. Liu, Y.D. Jiang, Sens. Actuators B-Chem. 298 (2019) 126874. |
[23] | D.H. Ho, Y.Y. Choi, S.B. Jo, J.M. Myoung, J.H. Cho, Adv. Mater. 33 (2021) 2005846. |
[24] | T.T. Zhou, T. Zhang, Small Methods 5 (2021) 2100515. |
[25] | H. Li, X. Li, J. Liang, Y. Chen, Adv. Energy Mater. 9 (2019) 1803987. |
[26] | Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.H. Yang, Adv. Sci. 7 (2020) 1903077. |
[27] | K. Li, M.Y. Liang, H. Wang, X.H. Wang, Y.S. Huang, J. Coelho, S. Pinilla, Y.L. Zhang, F.W. Qi, V. Nicolosi, Y.X. Xu, Adv. Funct. Mater. 30 (2020) 2000842. |
[28] |
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A .S. Seral-Ascaso, A. Shmeliov, D. Krishnan, Chem. Mater. 29 (2017) 4848-4856.
DOI URL |
[29] | Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim, H.N. Alshareef, Adv. Mater. 32 (2020) 1908486. |
[30] |
J. Zhang, X.H. Liu, G. Neri, N. Pinna, Adv. Mater. 28 (2016) 795-831.
DOI URL |
[31] | K. Deshmukh, T. Kováˇrík, S.K.K. Pash, Coord. Chem. Rev. 424 (2020) 213514. |
[32] | H.P. Li, J.J. Liang, Adv. Mater. 32 (2020) 1805864. |
[33] | X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, Adv. Energy Mater. 10 (2020) 1903794. |
[34] |
L. Li, N. Zhang, M.Y. Zhang, L.L. Wu, X.T. Zhang, Z.G. Zhang, ACS Sustainable Chem. Eng. 6 (2018) 7442-7450.
DOI URL |
[35] | R. Li, X.Y. Ma, J.M. Li, J. Cao, H.Z. Gao, T.S. Li, X.Y. Zhang, L.C. Wang, Q.H. Zhang, G. Wang, C.Y. Hou, Y.G. Li, T. Palacios, Y.X. Lin, H.Z. Wang, X. Ling, Nat. Com- mun. 12 (2021) 1587. |
[36] |
Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.D. Ger, Y. Gogotsi, Energy Environ. Sci. 9 (2016) 2847-2854.
DOI URL |
[37] |
R. Krol, A. Goossens, E.A. Meulenkamp, J. Electrochem. Soc. 146 (1999) 3150.
DOI URL |
[38] |
X.Q. Fan, Y. Ding, Y. Liu, J.J. Liang, Y.S. Chen, ACS Nano 13 (2019) 8124-8134.
DOI URL |
[39] |
R.P. Pandey, K. Rasool, V.E. Madhavan, B. A ї ssa, Y. Gogotsi, K.A. Mahmoud, J. Mater. Chem. A 6 (2018) 3522-3533.
DOI URL |
[40] | Y. Zhang, C.W. Wang, H.S. Hou, G.Q. Zou, X.B. Ji, Adv. Energy Mater. 7 (2017) 1600173. |
[41] |
B. Jiang, Q. Wu, L.H. Zhang, Y.K. Zhang, Nanoscale 9 (2017) 1607-1615.
DOI URL PMID |
[42] | E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi, M. Yoshimura, Sci. Rep. 6 (2016) 32049. |
[43] | F. Ranjbar, S. Hajati, M. Ghaedi, K. Dashtian, H. Naderi, J. Toth, J. Hazard. Mater. 416 (2021) 126196. |
[44] |
R.W. Li, Y.W. Zhou, M.L. Sun, Z. Gong, Y.Y. Guo, X.T. Yin, F.Y. Wu, W.T. Ding, J. Mater. Sci. Technol. 35 (2019) 2232-2237.
DOI URL |
[45] | S.H. Kwon, T.H. Kim, S.M. Kim, S. Oh, K.K. Kim, Nanoscale 13 (2021) 12177-12184. |
[46] | E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, ACS Appl. Mater. Interfaces 9 (2017) 37184-37190. |
[47] |
Z.J. Yang, A. Liu, C.L. Wang, F.M. Liu, J.M. He, S.Q. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan, G.Y. Lu, ACS Sens. 4 (2019) 1261-1269.
DOI URL |
[48] | W.J. Yuan, K. Yang, H.F. Peng. F. Li, F.X. Yin, J. Mater. Chem. A 6 (2018) 18116-18124. |
[49] | S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T.Jung, ACSNano12(2018)986-993. |
[50] | S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang, H.W. Kim, T.H. Han, ACS Appl. Mater. Interfaces 12 (2020) 10434-10442. |
[51] | L. Jin, C.L. Wu, K. Wei, L.F. He, H. Gao, H.X. Zhang, K. Zhang, A.M. Asiri, K.A. Alamry, L. Yang, X.F. Chu, ACS Appl. Nano Mater. 3 (2020) 12071-12079. |
[52] | X. Li, J.L. Xu, Y.D. Jiang, Z.Z. He, B.H. Liu, H.K. Xie, H. Li, Z.M. Li, Y. Wang, H.L. Tai, Sens. Actuators B-Chem. 316 (2020) 128144. |
[53] | A. Kumar, A. Sanger, A. Kumar, R. Chandra, RSC Adv. 6 (2016) 77636-77643. |
[54] |
C.H. Liu, H.L. Tai, P. Zhang, Z.B. Ye, Y.J. Su, Y.D. Jiang, Sens. Actuators B-Chem. 246 (2017) 85-95.
DOI URL |
H.T. Fu, X.H. Yang, X.Z. An, W.R. Fan, X.C. Jiang, A.B. Yu, Sens. Actuators B-Chem. 252 (2017) 103-115.
DOI URL |
|
[56] | Y.L. Liu, L.L. Wang, H.R. Wang, M.Y. Xiong, T.Q. Yang, G.S. Azkharova, Sens. Ac- tuators B-Chem. 236 (2016) 529-536. |
[57] |
S.G. Pawar, M.A. Chougule, S. Sen, V.B. Patil, J. Appl. Polym. Sci. 125 (2012) 1418-1424.
DOI URL |
[58] | M. Liu, Z.Y. Wang, P. Song, Z.X. Yang, Q. Wang, Sens. Actuators B-Chem. 340 (2021) 129946. |
[59] | Y. Zhou, Y.H. Wang, Y.J. Wang, H.C. Yu, R.J. Zhang, J. Li, Z.G. Zang, X. Li, ACS Appl. Mater. Interfaces 13 (2021) 56485-56497. |
[60] | W.Y. Chen, S.N. Lai, C.C. Yen, X. Jiang, D. Peroulis, L.A. Stanciu, ACS Nano 14 (2020) 11490-11501. |
[61] | Y.Y. Song, Y.L. Xu, Q. Guo, Z.Q. Hua, F.X. Yin, W.J. Yuan, ACS Appl. Mater. Inter- faces 13 (2021) 39772-39780. |
[62] | H. Shin, D.H. Kim, W. Jung, J.S. Jang, Y.H. Kim, Y. Lee, K. Chang, J. Lee, J. Park, K. Namkoong, Il.D. Kim, ACS Nano 15 (2021) 14207-14217. |
[63] |
Z.J. Li, H. Li, Z.L. Wu, M.K. Wang, J.T. Luo, H. Torun, P.A. Hu, C. Yang, M. Grund-mann, X.T. Liu, Y.Q. Fu, Mater. Horiz. 6 (2019) 470-506.
DOI URL |
[64] |
W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nat. Commun. 11 (2020) 1302.
DOI URL |
[1] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
[2] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[3] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
[4] | Anchal Sharma, Puneet Negi, Ruhit Jyoti Konwar, Hemaunt Kumar, Yogita Verma, Shailja, Prakash Chandra Sati, Bhargav Rajyaguru, Himanshu Dadhich, N.A. Shah, P.S. Solanki. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions [J]. J. Mater. Sci. Technol., 2022, 111(0): 287-297. |
[5] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[6] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[7] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[8] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[9] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[10] | Shengshen Gu, Aleksei N. Marianov, Haimei Xu, Yijiao Jiang. Effect of TiO2 support on immobilization of cobalt porphyrin for electrochemical CO2 reduction [J]. J. Mater. Sci. Technol., 2021, 80(0): 20-27. |
[11] | Kaibin Li, Ming Li, Chang Xu, Zengyan Du, Jiawang Chen, Fengxia Zou, Chongwen Zou, Sichao Xu, Guanghai Li. A TiO2 nanotubes film with excellent antireflective and near-perfect self-cleaning performances [J]. J. Mater. Sci. Technol., 2021, 88(0): 11-20. |
[12] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[13] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
[14] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[15] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||