J. Mater. Sci. Technol. ›› 2022, Vol. 122: 54-67.DOI: 10.1016/j.jmst.2021.11.075
• Research Article • Previous Articles Next Articles
Z. QUa,b, Z.J. Zhanga,b,*(), J.X. Yana,b, P. Zhanga,b, B.S. Gonga,b, S.L. Liua,b, Z.F. Zhanga,b, T.G. Langdanc,*(
)
Received:
2021-10-22
Revised:
2021-11-15
Accepted:
2021-11-20
Published:
2022-09-20
Online:
2022-03-12
Contact:
Z.J. Zhang,T.G. Langdan
About author:
zhfzhang@imr.ac.cn (Z.F. Zhang).Z. QU, Z.J. Zhang, J.X. Yan, P. Zhang, B.S. Gong, S.L. Liu, Z.F. Zhang, T.G. Langdan. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys[J]. J. Mater. Sci. Technol., 2022, 122: 54-67.
Alloy | Cu | Mg | Si | Zn | Cr | Fe | Mn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
2024 | 4.5 | 1.5 | 0.5 | 0.25 | <0.01 | 0.5 | 0.58 | 0.15 | Bal. |
6A01 | <0.05 | 0.59 | 0.48 | <0.05 | 0.14 | 0.14 | 0.25 | <0.05 | Bal. |
7075 | 1.5 | 2.4 | 0.15 | 5.7 | — | 0.26 | — | — | Bal. |
Table 1. Chemical composition of the experimental Al alloys (wt.%).
Alloy | Cu | Mg | Si | Zn | Cr | Fe | Mn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
2024 | 4.5 | 1.5 | 0.5 | 0.25 | <0.01 | 0.5 | 0.58 | 0.15 | Bal. |
6A01 | <0.05 | 0.59 | 0.48 | <0.05 | 0.14 | 0.14 | 0.25 | <0.05 | Bal. |
7075 | 1.5 | 2.4 | 0.15 | 5.7 | — | 0.26 | — | — | Bal. |
Fig. 2. Bright-field TEM images and schematic morphologies of the second phases. The 2024 Al alloy was aged at 180 °C for (a) 2 h (UA) and (b, c) 120 h (OA); the 6A01 Al alloy was aged at 175 °C for (d) 50 min (UA) and (e, f) 168 h (OA); the 7075 Al alloy was aged at 140 °C for (g) 2 h (UA) and (h, i) 264 h (OA). The electron beam is close to $$.
Fig. 3. (a-c) Engineering stress-strain curves and (d-f) evolution of UTS and UE with aging times for the three different Al alloys. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 4. Tensile strength and elongation for various grades of wrought Al alloys with different aging states. (a) 2xxx series [13⇓⇓-16], [19]; (b) 6xxx series [20⇓⇓-23,26⇓-28]; (c) 6082 in different aging heat-treating regime [29]; (d) 7xxx series [30], [31], [32], [33], [34].
Fig. 5. Dislocation morphologies under different aging states. (a) and (d) 2024 Al alloy subjected to a strain of ε = 6%; (b) and (e) 6A01 Al alloy subjected to an ε = 5.5% deformation; (c) and (f) 7075 Al alloy subjected to a strain of ε = 8%. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 6. Tensile true stress-strain curves and corresponding work-hardening rate Θ vs flow stress, where the UA and OA states have similar yield strength. (a) and (d) 2024; (b) and (e) 6A01; and (c) and (f) 7075 alloys.
Alloy | State | Dxrd (nm) | cxrd (%) | ρ (m-2) | ρUA/ρOA |
---|---|---|---|---|---|
2024 | UA | 6399 | 0.259 | 4.9 × 1012 | 3.7 |
OA | 16,631 | 0.185 | 1.3 × 1012 | ||
6A01 | UA | 10,648 | 0.159 | 1.3 × 1012 | 2.3 |
OA | 18,190 | 0.12 | 0.8 × 1012 | ||
7075 | UA | 25,005 | 0.161 | 7.7 × 1011 | 1.6 |
OA | 29,827 | 0.123 | 4.9 × 1011 |
Table 2. The measured micro-scale strains and estimated dislocation densities of 2024, 6A01, and 7075 Al alloys under different aging and strain conditions.
Alloy | State | Dxrd (nm) | cxrd (%) | ρ (m-2) | ρUA/ρOA |
---|---|---|---|---|---|
2024 | UA | 6399 | 0.259 | 4.9 × 1012 | 3.7 |
OA | 16,631 | 0.185 | 1.3 × 1012 | ||
6A01 | UA | 10,648 | 0.159 | 1.3 × 1012 | 2.3 |
OA | 18,190 | 0.12 | 0.8 × 1012 | ||
7075 | UA | 25,005 | 0.161 | 7.7 × 1011 | 1.6 |
OA | 29,827 | 0.123 | 4.9 × 1011 |
Fig. 8. Bright-field TEM micrographs of the compressive specimen after 40% true strain. (a), (d) 2024; (b), (e) 6A01; (c), (f) 7075 alloys. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 9. (a) The calculation result of the generalized stacking fault energy (GSFE) curves; (b) the calculated values of the unstable stacking fault (USF) and the stacking fault (SF).
Fig. 10. Change of hardening exponent n with aging time for the three Al alloys, which shows that the slip mode of dislocations is closely related to the evolution of the second phases rather than to the matrix from three separate aspects corresponding to the initial n0, saturated ns, and the change of n during aging.
Fig. 11. True stress-strain curves, microstructures, and exponential fitted values of n for pure Al. The value n of pure Al (~7-8) is close to that of the SSS state (n = 9) which proves that the alloying elements have little effect on the value of n.
Fig. 13. The variation trend of the hardening exponent n with the annihilation coefficient k, the volume fraction fsp, the aspect ratio ω, and the size l for the rod-shaped second phase.
Fig. 14. Effects of the four parameters, (a) k, (b) fsp, (c) ω, and (d) l (or d) on the hardening exponent n for the two typical shaped second phases, which indicates some methods to reduce the n value of the Al alloys containing by-passable second phases: (i) select the second phase with the smaller influence range, (ii) reduce the density of the second phases, (iii) increase the size of the second phases, and (iv) control the shape of the second phases to be equiaxial or spherical.
Fig. 15. The evolution of second phase morphologies with the aging time: (a) 2024; (b) 6A01; and (c) 7075 alloys; horizontal and vertical comparisons of the microstructures show that the value of n increases with the density and aspect ratio of the second phase where this is consistent with the trend reflected by Eq. (11) and Fig. 14.
Alloy | Aging time (h) | fsp (%) | ω | l or d (nm) | k |
---|---|---|---|---|---|
2024 | 16 | 0.89 | 16.81 | 341.40 (l) | 4.50 |
20 | 1.60 | 19.48 | 448.95 (l) | 4.58 | |
24 | 2.30 | 23.56 | 540.50 (l) | 4.35 | |
120 | 3.01 | 21.42 | 523.07 (l) | 4.35 | |
6A01 | 12 | 0.66 | 3.44 | 21.87 (l) | 1.72 |
48 | 0.96 | 3.79 | 24.72 (l) | 1.72 | |
96 | 1.24 | 4.13 | 29.66 (l) | 1.90 | |
168 | 1.46 | 4.23 | 32.13 (l) | 1.89 | |
7075 | 20 | 2.23 | 1.34 | 5.84 (d) | 1.12 |
48 | 2.42 | 1.41 | 7.04 (d) | 1.19 | |
72 | 2.80 | 1.61 | 7.12 (d) | 1.18 | |
264 | 3.29 | 1.48 | 9.32 (d) | 1.30 |
Table 3. Statistical results of the geometric parameter of the second phase and the calculated k value.
Alloy | Aging time (h) | fsp (%) | ω | l or d (nm) | k |
---|---|---|---|---|---|
2024 | 16 | 0.89 | 16.81 | 341.40 (l) | 4.50 |
20 | 1.60 | 19.48 | 448.95 (l) | 4.58 | |
24 | 2.30 | 23.56 | 540.50 (l) | 4.35 | |
120 | 3.01 | 21.42 | 523.07 (l) | 4.35 | |
6A01 | 12 | 0.66 | 3.44 | 21.87 (l) | 1.72 |
48 | 0.96 | 3.79 | 24.72 (l) | 1.72 | |
96 | 1.24 | 4.13 | 29.66 (l) | 1.90 | |
168 | 1.46 | 4.23 | 32.13 (l) | 1.89 | |
7075 | 20 | 2.23 | 1.34 | 5.84 (d) | 1.12 |
48 | 2.42 | 1.41 | 7.04 (d) | 1.19 | |
72 | 2.80 | 1.61 | 7.12 (d) | 1.18 | |
264 | 3.29 | 1.48 | 9.32 (d) | 1.30 |
Fig. 16. Variation trend of k values with aging time for the three different Al alloys (the respective typical dislocation configurations are also displayed). These plots show that the value of k is determined mainly by the characteristics of the second phases and it is little affected by the geometric features or volume fractions of the second phases.
Fig. 17. Illustration of the general relationship between the strength and plasticity and the common mechanism defining the wrought Al alloys: the strength-plasticity curve behaves in a “barb” shape with changing aging time, where this is owing to the increasing cross-slip tendency with aging time.
[1] | J.E. Hatch,Aluminum: Properties and Physical Metallurgy, ASM international, Geauga, 1984. |
[2] | P.J. Gregson, H.M.Flower, in:High Performance Materials in Aerospace, Springer, Netherlands, 1995, pp. 49-84. |
[3] | D. Lehmhus, M. Busse, A. Herrmann, K. Kayvantash,Structural Materials and Processes in Transportation, Wiley-VCH, Weinheim, 2013. |
[4] |
R.O. Ritchie,Nat. Mater. 10 (2011) 817-822.
DOI URL PMID |
[5] | S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner, R. Holmestad,Adv. Phys. X 3 (2018) 790-813. |
[6] | P. Dumitraschkewitz, S.S.A. Gerstl, L.T. Stephenson, P.J. Uggowitzer, S. Pogatscher,Adv. Eng. Mater. 20 (2018) 1800255. |
[7] |
T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z. Shi, J. Lin, J.R. Yang,Acta Mater. 174 (2019) 351-368.
DOI URL |
[8] |
J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, J. Zou,Scr. Mater. 63 (2010) 1061-1064.
DOI URL |
[9] |
W.F. Miao, D.E. Laughlin,Scr. Mater. 40 (1999) 873-878.
DOI URL |
[10] |
S.C. Wang, M.J. Starink,Int. Mater. Rev. 50 (2005) 193-215.
DOI URL |
[11] |
S. Esmaeili, D.J. Lloyd, W.J. Poole,Acta Mater. 51 (2003) 2243-2257.
DOI URL |
[12] |
N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, S.K. Kourkoulis,Mater. Sci. Eng. A 700 (2017) 457-467.
DOI URL |
[13] |
S.V. Kamat, J.P. Hirth,Acta Mater. 44 (1996) 1047-1054.
DOI URL |
[14] | Y. Li, Z.S. Shi, J.G. Lin,Mater. Des. 183 (2019) 108121. |
[15] |
J. Da Costa Teixeira, L. Bourgeois, C.W. Sinclair, C.R. Hutchinson,Acta Mater. 57 (2009) 6075-6089.
DOI URL |
[16] | B.P. Huang, Z. Zheng, D.F. Yin, Z.M. Mo,Mater. Sci. Forum 217 (1996) 1239-1244. |
[17] |
S. Suresh, A.K. Vasudevan, M. Tosten, P.R. Howell,Acta Metall. 35 (1987) 25-46.
DOI URL |
[18] |
N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, S.K. Kourkoulis,Corros. Sci. 102 (2016) 413-424.
DOI URL |
[19] |
V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak,Mater. Sci. Eng. A 528 (2011) 4040-4049.
DOI URL |
[20] |
L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd,Metall. Mater. Trans. A 34 (2003) 2473-2481.
DOI URL |
[21] |
F. Ozturk, A. Sisman, S. Toros, S. Kilic, R.C. Picu,Mater. Des. 31 (2010) 972-975.
DOI URL |
[22] |
S. Nandy, A.P. Sekhar, T. Kar, K.K. Ray, D. Das,Philos. Mag. 97 (2017) 1978-2003.
DOI URL |
[23] |
J.K. Holmen, B.H. Frodal, O.S. Hopperstad, T. Børvik,Int. J. Plast. 99 (2017) 144-161.
DOI URL |
[24] | T. Ye, Y.Z. Wu, A.M. Liu, C.C. Xu,L.X. Li, Vacuum 159 (2019) 37-44. |
[25] |
R.A. Siddiqui, H.A. Abdullah, K.R. Al-Belushi,J. Mater. Process. Technol. 102 (2000) 234-240.
DOI URL |
[26] | M. Khadyko, O.R. Myhr, O.S. Hopperstad,Mech. Mater. 136 (2019) 103069. |
[27] | X. He, Q.L. Pan, H. Li, Z.Q. Huang, S.H. Liu, K. Li, X.Y. Li,Metals 9 (2019) 12 (Basel). |
[28] |
S.C. Bergsma, M.E. Kassner, X. Li, U.A. Delos-Reyes, T.A. Hayes,J. Mater. Eng. Perform. 5 (1996) 111-116.
DOI URL |
[29] | C.R. Brooks, J.R. Davis, G.M. Davidson, S.R. Lampman, T.B. Zorc, J.L. Daquila, A.W. Ronke, K.L. Henniger, R.C.Uhl, in:ASM Handbook, 4, ASM International, Geauga, 1991, pp. 823-923. |
[30] |
G. Fribourg, Y. Brechet, A. Deschamps, A. Simar,Acta Mater. 59 (2011) 3621-3635.
DOI URL |
[31] | C.Q. Chen, J.F. Knott,Met. Sci. 15 (1981) 357-364. |
[32] |
I. Westermann, O.S. Hopperstad, K. Marthinsen, B. Holmedal,Mater. Sci. Eng. A 524 (2009) 151-157.
DOI URL |
[33] | A.L. Ning, Z.Y. Liu, S.M. Zeng, Trans. Nonferrous Met. Soc. China 16 (2006) 1341-1347. |
[34] |
P.K. Rout, M.M. Ghosh, K.S. Ghosh,Mater. Charact. 104 (2015) 49-60.
DOI URL |
[35] |
G. Liu, S. Scudino, R. Li, U. Kühn, J. Sun, J. Eckert,Mech. Mater. 43 (2011) 556-566.
DOI URL |
[36] |
K.O. Pedersen, I. Westermann, T. Furu, T. Børvik, O.S. Hopperstad,Mater. Des. 70 (2015) 31-44.
DOI URL |
[37] | C. Mondal, B. Mishra, P.K. Jena, K. Siva Kumar, T.B. Bhat,Int. J. Impact Eng. 38 (2011) 745-754. Z. Qu, Z.J. Zhang, J.X. Yan et al. |
[38] |
O.R. Myhr, Ø. Grong, K.O. Pedersen,Metall. Mater. Trans. A 41 (2010) 2276-2289.
DOI URL |
[39] |
A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, M. Weyland,Acta Mater. 61 (2013) 4010-4021.
DOI URL |
[40] |
Q.L. Zhao, B. Holmedal,Philos. Mag. 93 (2013) 3142-3153.
DOI URL |
[41] |
Q.L. Zhao, B. Holmedal, Y.J. Li,Philos. Mag. 93 (2013) 2995-3011.
DOI URL |
[42] | V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak,Metall. Mater. Trans. A 40A ( 2009) 3186-3195. |
[43] | J.D. Embury, W.J. Poole, D.J. Lloyd,Mater. Sci. Forum 519-521 (2006) 71-78. |
[44] |
F. Fazeli, W.J. Poole, C.W. Sinclair,Acta Mater. 56 (2008) 1909-1918.
DOI URL |
[45] |
W.J. Poole, X. Wang, D.J. Lloyd, J.D. Embury,Philos. Mag. 85 (2005) 3113-3135.
DOI URL |
[46] |
A. Simar, Y. Brechet, B. de Meester, A. Denquin, T. Pardoen,Acta Mater. 55 (2007) 6133-6143.
DOI URL |
[47] |
J.D. Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, C.R. Hutchinson,Acta Mater. 56 (2008) 6109-6122.
DOI URL |
[48] |
I. Gutierrez-Urrutia, M.A. Muñoz-Morris, D.G. Morris,Mater. Sci. Eng. A 394 (2005) 399-410.
DOI URL |
[49] |
W.J. Poole, X. Wang, J.D. Embury, D.J. Lloyd,Mater. Sci. Eng. A 755 (2019) 307-317.
DOI URL |
[50] | Y. Estrin, A.S. Krausz.K. Krausz, in: Unified Constitutive Laws of Plastic Defor- mation, Academic Press, San Diego, 1996, pp. 69-106. |
[51] |
W.A. Tayon, K.E. Nygren, R.E. Crooks, D.C. Pagan,Acta Mater. 173 (2019) 231-241.
DOI URL |
[52] |
V. Gerold, H.P. Karnthaler,Acta Metall. 37 (1989) 2177-2183.
DOI URL |
[53] |
J.M. Duva, M.A. Daeubler, E.A. Starke, G. Luetjering,Acta Metall. 36 (1988) 585-589.
DOI URL |
[54] | P.B. Hirsch, F. Humphreys,Proc. Roy. Soc. Lond. A318 (1970) 45-72. |
[55] |
M.F. Ashby, G.C. Smith,Philos. Mag. 5 (1960) 298-301.
DOI URL |
[56] | W. Poole, J. Embury, D. Lloyd. R. Lumley, in: Fundamentals of Aluminium Metallurgy, Woodhead Publishing, Oxford, 2011, pp. 307-344. |
[57] |
S.P. Yuan, G. Liu, R.H. Wang, G.J. Zhang, X. Pu, J. Sun, K.H. Chen,Scr. Mater. 60 (2009) 1109-1112.
DOI URL |
[58] | W.J. Poole, D.J. Lloyd, J.F. Nie, A.J. Morton, B.C.Muddle,in:Proceedings of the 9th International Conference on Aluminium Alloys, Institute of Materials En- gineering Australasia,2004, p. 939. |
[59] |
L.Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, L. Vitos,Acta Mater. 136 (2017) 215-223.
DOI URL |
[60] | W. Li, S. Lu, Q.M. Hu, S.K. Kwon, B. Johansson, L. Vitos,J. Phys. Condens. Mat-ter 26 (2014) 265005. |
[61] | J.X. Yan, Z.J. Zhang, H. Yu, K.Q. Li, Q.M. Hu, J.B. Yang, Z.F. Zhang,J. Alloy. Compd. 866 (2021) 158869. |
[62] | R. Liu, Z.J. Zhang, L.L. Li, X.H. An, Z.F. Zhang,Sci. Rep. 5 (2015) 9550. |
[63] | Z.Q. Liu, G. Liu, R.T. Qu, Z.F. Zhang, S.J. Wu, T. Zhang,Sci. Rep. 4 (2014) 4167. |
[64] | U.F. Kocks, J. Eng. Mater.Technol. 98 (1976) 76-75. |
[65] | S. Esmaeili, L.M. Cheng, A. Deschamps, D.J. Lloyd, W.J. Poole,Mater. Sci. Eng. A 319-321 (2001) 461-465. |
[66] |
X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon,Scr. Mater. 64 (2011) 954-957.
DOI URL |
[67] |
P. Zhang, X.H. An, Z.J. Zhang, S.D. Wu, S.X. Li, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon,Scr. Mater. 67 (2012) 871-874.
DOI URL |
[68] |
Z.J. Zhang, P. Zhang, L.L. Li, Z.F. Zhang,Acta Mater. 60 (2012) 3113-3127.
DOI URL |
[69] |
P. Li, S.X. Li, Z.G. Wang, Z.F. Zhang,Prog. Mater. Sci. 56 (2011) 328-377.
DOI URL |
[70] |
C.L. Yang, Z.J. Zhang, P. Zhang, Z.F. Zhang,Acta Mater. 136 (2017) 1-10.
DOI URL |
[71] |
G.K. Williamson, W.H. Hall,Acta Metall. 1 (1953) 22-31.
DOI URL |
[72] |
M. Lewandowska, J. Mizera, J.W. Wyrzykowski,Mater. Charact. 45 (2000) 195-202.
DOI URL |
[73] |
M.F. Ashby,Philos. Mag. 14 (1966) 1157-1178.
DOI URL |
[74] | M.F. Ashby,Philos. Mag. 21 (1970) 399-424. |
[75] |
A.K. Vasudevan, R.D. Doherty,Acta Metall. 35 (1987) 1193-1219.
DOI URL |
[76] | F.J. Humphreys, P.B. Hirsch,Philos. Mag. 34 (1976) 373-390. |
[77] |
A. Deschamps, Y. Brechet, C.J. Necker, S. Saimoto, J.D. Embury,Mater. Sci. Eng. A 207 (1996) 143-152.
DOI URL |
[78] |
Ø. Ryen, H.I. Laukli, B.R. Holmedal, E. Nes,Metall. Mater. Trans. A 37 (2006) 2007-2013.
DOI URL |
[79] |
M. Muzyk, Z. Pakiela, K.J. Kurzydlowski,Scr. Mater. 64 (2011) 916-918.
DOI URL |
[80] |
K. Marthinsen, E. Nes,Mater. Sci. Technol. 17 (2013) 376-388.
DOI URL |
[81] | M. Muzyk, Z. Pakieła, K.J. Kurzydłowski,Metals 8 (2018) 823 (Basel). |
[82] | Q. Gao, H. Zhang, R. Yang, Z. Fan, Y. Liu, J. Wang, X. Geng, Y. Gao, S. Shang, Y. Du, Z. Liu, J. Min. Metall.Sect. B Metall. 54 (2018) 185-196. |
[83] |
U.F. Kocks, H. Mecking,Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[84] | E. Voce,J. Inst. Metals. 74 (1948) 537-562. |
[85] |
J.H. Palm,Appl. Sci. Res. 1 (1949) 198-214.
DOI URL |
[86] | P.M. Anderson, J.P. Hirth, J. Lothe,Theory of Dislocations, Cambridge Univer- sity Press, Cambridge, 2017. |
[87] |
G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen,Mater. Sci. Eng. A 344 (2003) 113-124.
DOI URL |
[88] |
J.F. Nie, B.C. Muddle,Acta Mater. 56 (2008) 3490-3501.
DOI URL |
[89] |
A.W. Zhu, E.A. Starke Jr,Acta Mater. 47 (1999) 3263-3269.
DOI URL |
[90] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou,J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[91] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li,Scr. Mater. 193 (2021) 127-131.
DOI URL |
[92] |
C.X. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q.L. Xiao, Q. Li,J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[93] |
D.L. Gilmore, E.A. Starke Jr,Metall. Mater. Trans. A 28 (1997) 1399-1415.
DOI URL |
[94] |
J. Xu, Y. Li, K. Ma, Y.A. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li,Scr. Mater. 187 (2020) 142-147.
DOI URL |
[95] |
Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li,Acta Mater. 187 (2020) 51-65.
DOI URL |
[96] |
I. Khan, M. Starink, J.L. Yan,Mater. Sci. Eng. A 472 (2008) 66-74.
DOI URL |
[97] |
A. Deschamps, Y. Bréchet, F. Livet,Mater. Sci. Technol. 15 (1999) 993-1000.
DOI URL |
[98] |
J.D. Boyd, R.B. Nicholson,Acta Metall. 19 (1971) 1101-1109.
DOI URL |
[99] |
C. Yang, P. Zhang, D. Shao, R.H. Wang, L.F. Cao, J.Y. Zhang, G. Liu, B.A. Chen, J. Sun,Acta Mater. 119 (2016) 68-79.
DOI URL |
[100] | T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh,Proc. Natl. Acad. Sci. U.S.A.104 (2007) 3031-3036. |
[101] |
J.J. Gracio, F. Barlat, E.F. Rauch, P.T. Jones, V.F. Neto, A.B. Lopes,Int. J. Plast. 20 (2004) 427-445.
DOI URL |
[1] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[2] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[3] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[4] | Gui-Jia Gao, Mei-Qi Zeng, En-Liang Zhang, Rong-Chang Zeng, Lan-Yue Cui, Dao-kui Xu, Feng-Qin Wang, M. Bobby Kannan. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 161-178. |
[5] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[6] | Jing Fan, Wei Rao, Junwei Qiao, P.K. Liaw, Daniel Şopu, Daniel Kiener, Jürgen Eckert, Guozheng Kang, Yucheng Wu. Achieving work hardening by forming boundaries on the nanoscale in a Ti-based metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2020, 50(0): 192-203. |
[7] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[8] | Longjun Wu, Zhengwang Zhu, Dingming Liu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Zhengkun Li, Long Zhang, Haifeng Zhang. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region [J]. J. Mater. Sci. Technol., 2020, 37(0): 64-70. |
[9] | J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 1877-1885. |
[10] | B. Zhang, X.L. Ma. A review—Pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35(7): 1455-1465. |
[11] | rollingBin Fu, Liming Fu, Shichang Liu, Huan Rong Wang, Wei Wang, Aidang Shan. High strength-ductility nano-structured high manganese steel produced by cryogenic asymmetry-rolling [J]. J. Mater. Sci. Technol., 2018, 34(4): 695-699. |
[12] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2507-2514. |
[13] | Song Yingwei, Shan Dayong, Han En-Hou. Pitting corrosion of a Rare Earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33(9): 954-960. |
[14] | Wu Zhongshan, Wang Jingfeng, Wang Haibo, Ma She, Huang Song, Li Shun, Pan Fusheng. Enhanced Damping Capacities of Mg-Ce Alloy by the Special Microstructure with Parallel Second Phase [J]. J. Mater. Sci. Technol., 2017, 33(9): 941-946. |
[15] | Jin Zhaoyang,Yu Donghua,Wu Xintong,Yin Kai,Yan Kai. Drag Effects of Solute and Second Phase Distributions on the Grain Growth Kinetics of Pre-Extruded Mg-6Zn Alloy [J]. J. Mater. Sci. Technol., 2016, 32(12): 1260-1266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||