J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (9): 1877-1885.DOI: 10.1016/j.jmst.2019.05.007
• Orginal Article • Previous Articles Next Articles
J.S. Zhanga, W. Lia, X.F. Liaoa, H.Y. Yua, L.Z. Zhaoab, H.X. Zenga, D.R. Penga, Z.W. Liua*()
Received:
2019-01-31
Revised:
2019-02-03
Accepted:
2019-03-08
Online:
2019-09-20
Published:
2019-07-26
Contact:
Liu Z.W.
About author:
1 These authors contributed equally to this work.
J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys[J]. J. Mater. Sci. Technol., 2019, 35(9): 1877-1885.
Fig. 3. (a) Dependences of lattice parameters a, c, c/a of the 2:14:1 phase, (b) lattice parameters a of 1:2 phase on the Ta content x for Ce17Fe78-xTaxB6 alloys.
Fig. 5. Mapping of elements distributions in the Ce17Fe77.25Ta0.75B6 alloy: the image in STEM HAADF mode (a) and the distribution of (b) Ce element, (c) Fe element, and (d) Ta element.
Fig. 6. TEM images of the Ce17Fe77.25Ta0.75B6 alloy: (a) Bright-field TEM image and the EDS results of spot A, B and C. The HRTEM images of grain A and grain C are shown in Fig. (b) and Fig. (c) (d). Fast Fourier Transformation (FFT) for the HRTEM images of the grain in Fig. (b), Fig. (c) and Fig. (d) are shown in Figs. (e), (f) and (g), respectively.
Fig. 7. Simulation results on pinning and without pinning models. (a) Simulation model consisting of two non-magnetic grains within each Ce2Fe14B grain for pinning effects. (b) Demagnetization curves and their fitting line corresponding to the models w/ and w/o particles, the inset shows experimental M?H curves for x = 0 and x = 0.75 alloys. (c) Demagnetizing field distribution in the section of x = 130 nm for both models in the saturation state. (d) Magnetization reversal behaviors in the section of x = 130 nm for both models at different reversed magnetic field marked in (a).
Fig. 8. Plot of μ0Hc(T)/Js(T) vs μ0Ha(T)/Js(T) for (a) Ce17Fe78B6 and (b) Ce17Fe77.25Ta0.75B6 alloys. Plot of [Hc(T)]1/2 vs [T(K)]2/3 for (c) Ce17Fe78B6 and (d) Ce17Fe77.25Ta0.75B6 alloys.
Composition | Hcj (kA/m) | Jr (T) | (BH)max (kJ/m3) | Annealing temperature (℃) | Ref. | |
---|---|---|---|---|---|---|
Ce-Fe-Ta-B | Ce17Fe78B6 | 439 | 0.47 | 35 | / | This work |
Ce17Fe77.25Ta0.75B6 | 553 | 0.45 | 32 | / | This work | |
Ce15Fe79.25Ta0.75B6 | 514 | 0.49 | 36 | / | This work | |
Ce14Fe80.25Ta0.75B6 | 448 | 0.54 | 41 | / | This work | |
Ce13Fe81.25Ta0.75B6 | 387 | 0.59 | 47 | / | This work | |
Ce-Fe-M-B | Ce17Fe77.25B6Ga0.75 | 492 | 0.43 | 19 | / | [ |
Ce17Fe77.5B6Zr0.5 | 430 | 0.48 | 36 | 788 | [ | |
Ce17Fe77B6Hf | 420 | 0.38 | / | / | [ | |
Ce3Fe12Co2B | 390 | 0.52 | 35 | / | [ |
Table 1 Magnetic properties of melt-spun Ce-(M)-Fe-B alloys in the current work and reported in other literature.
Composition | Hcj (kA/m) | Jr (T) | (BH)max (kJ/m3) | Annealing temperature (℃) | Ref. | |
---|---|---|---|---|---|---|
Ce-Fe-Ta-B | Ce17Fe78B6 | 439 | 0.47 | 35 | / | This work |
Ce17Fe77.25Ta0.75B6 | 553 | 0.45 | 32 | / | This work | |
Ce15Fe79.25Ta0.75B6 | 514 | 0.49 | 36 | / | This work | |
Ce14Fe80.25Ta0.75B6 | 448 | 0.54 | 41 | / | This work | |
Ce13Fe81.25Ta0.75B6 | 387 | 0.59 | 47 | / | This work | |
Ce-Fe-M-B | Ce17Fe77.25B6Ga0.75 | 492 | 0.43 | 19 | / | [ |
Ce17Fe77.5B6Zr0.5 | 430 | 0.48 | 36 | 788 | [ | |
Ce17Fe77B6Hf | 420 | 0.38 | / | / | [ | |
Ce3Fe12Co2B | 390 | 0.52 | 35 | / | [ |
|
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Tao Yuan, Xin Song, Xianglong Zhou, Wentao Jia, Munzali Musa, Jingdong Wang, Tianyu Ma. Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. J. Mater. Sci. Technol., 2020, 53(0): 73-81. |
[3] | H.R. Peng, B.S Liu, F. Liu. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43(0): 21-31. |
[4] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[5] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[6] | Yongbin Hua, Jae Su Yu. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination [J]. J. Mater. Sci. Technol., 2020, 54(0): 230-239. |
[7] | Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films [J]. J. Mater. Sci. Technol., 2020, 41(0): 81-87. |
[8] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[9] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[10] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[11] | Yangtao Zhou, Yuning Zan, Shijian Zheng, Xiaohong Shao, Qianqian Jin, Bo Zhang, Quanzhao Wang, Bolv Xiao, Xiuliang Ma, Zongyi Ma. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2 [J]. J. Mater. Sci. Technol., 2019, 35(9): 1825-1830. |
[12] | B. Zhang, X.L. Ma. A review—Pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35(7): 1455-1465. |
[13] | Minjie Xu, Chao Hu, Haiyan Xiang, Haozi Lu, Travis Shihao Hu, Bonian Hu, Song Liu, Gang Yu. Controllable phase transformation and improved thermal stability of nickel on tungsten substrate by electrodeposition [J]. J. Mater. Sci. Technol., 2019, 35(5): 727-732. |
[14] | Zifan Zhao, Huimin Xiang, ZhiDai Fu, Zhijian Peng, Yanchun Zhou. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity [J]. J. Mater. Sci. Technol., 2019, 35(10): 2227-2231. |
[15] | Sima Kashi, Rahul K. Gupta, Nhol Kao, S. Ali Hadigheh, Sati N. Bhattacharya. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices [J]. J. Mater. Sci. Technol., 2018, 34(6): 1026-1034. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||