J. Mater. Sci. Technol. ›› 2022, Vol. 122: 77-83.DOI: 10.1016/j.jmst.2021.12.052
• Research Article • Previous Articles Next Articles
Changxin Wanga,b, Yan Zhanga,b, Cheng Wena,b, Mingli Yangc, Turab Lookmand, Yanjing Sua,b,*(), Tong-Yi Zhange,f
Received:
2021-09-17
Revised:
2021-11-27
Accepted:
2021-12-13
Published:
2022-09-20
Online:
2022-03-12
Contact:
Yanjing Su
About author:
* E-mail address: yjsu@ustb.edu.cn (Y. Su).Changxin Wang, Yan Zhang, Cheng Wen, Mingli Yang, Turab Lookman, Yanjing Su, Tong-Yi Zhang. Symbolic regression in materials science via dimension-synchronous-computation[J]. J. Mater. Sci. Technol., 2022, 122: 77-83.
Name | Abbreviation | Value | Unit |
---|---|---|---|
Electronic charge | E | | A⋅s |
Bohr radius | | 5.290×10-11 | m |
Madelung constant | | 1.740 | 1 |
Table 1. Potential physical constants for band gap.
Name | Abbreviation | Value | Unit |
---|---|---|---|
Electronic charge | E | | A⋅s |
Bohr radius | | 5.290×10-11 | m |
Madelung constant | | 1.740 | 1 |
Name | Value |
---|---|
Terminal condition | The best expression is stable for the last generation 20. |
Population | 1000 |
Operator | |
Terminal | 15 descriptors and 3 physical constants |
Score | R2 + Unit filter |
Upper limit of depth | 2 |
Target unit | eV |
Table 2. Parameters of SR-DSC.
Name | Value |
---|---|
Terminal condition | The best expression is stable for the last generation 20. |
Population | 1000 |
Operator | |
Terminal | 15 descriptors and 3 physical constants |
Score | R2 + Unit filter |
Upper limit of depth | 2 |
Target unit | eV |
Fig. 2. Pearson correlation map of the initial 32 descriptors. Blue and red colors denote positive and negative correlations, respectively. The fraction of the colored circular sector in each pie chart corresponds to the absolute value of the associated Pearson correlations coefficient. For each descriptor with A, B sites, we use the mean value of the A and B correlation values.
Name | Abbreviation | Unit |
---|---|---|
Cell volume | | ÅÅ3 |
Electron density | | ÅÅ-3 |
Electronegativity (Martynov & Batsanov) | | ÅÅ-1 |
Atomic volume (Villars, Daams) | | 107pm3 |
Lattice constants a | | ÅÅ |
Lattice constants c | | ÅÅ |
Covalent radii | | ÅÅ |
Ionic radii (Shannon) | | ÅÅ |
Core electron distance (Schubert) | | ÅÅ |
Latent heat of fusion | | |
Energy cohesive (Brewer) | | |
Total energy | | |
Effective nuclear charge | | 1 |
Valence electron number (Slater) | | 1 |
Electron number | | 1 |
Table 3. 15 representative descriptors. ÅÅ(100 pm), $\text{eV} $(1.602 ×10-19J).
Name | Abbreviation | Unit |
---|---|---|
Cell volume | | ÅÅ3 |
Electron density | | ÅÅ-3 |
Electronegativity (Martynov & Batsanov) | | ÅÅ-1 |
Atomic volume (Villars, Daams) | | 107pm3 |
Lattice constants a | | ÅÅ |
Lattice constants c | | ÅÅ |
Covalent radii | | ÅÅ |
Ionic radii (Shannon) | | ÅÅ |
Core electron distance (Schubert) | | ÅÅ |
Latent heat of fusion | | |
Energy cohesive (Brewer) | | |
Total energy | | |
Effective nuclear charge | | 1 |
Valence electron number (Slater) | | 1 |
Electron number | | 1 |
Fig. 3. Symbolic regression flow. (A) SR-GP flow. (B) Dimension calculation system. (B1) Standard unit conversion. (B2) Transformation of Unit to the array of dimension. (B3) Dimensional operation. (B4) Transformation of the array of dimension to the unit. (C) Tree mode comparison of SR-GP. (C1) SR-BGP. (C2) Both are the tree model of a general weighted average formula. The symbol ‘$S$’ implies that these operators contain no processing but act as placeholders. For better comparison, the height of the expression, ${{h}_{\text{BGP}}}$ for SR-BGP is defined as the maximum number of connections in the double-layers, corresponding to the usual definition for SR-GP.
Fig. 4. Symbolic regression results. (A) Comparison of the iterative optimization curve for three methods, ${{R}^{2}}$ and L are scores of determination coefficient and the number of terms in the best expressions, respectively. The iteration process is repeated until the ${{R}^{2}}$ of the best expression does not change for 20 generations. (B) ${{R}^{2}}$ comparison with common machine learning models and SR-DSC. (C) Stability results with different data sizes. (D, E) Comparison of the calculated band gap using Eq. (1) and experimental band gap for (D) NaCl-type and (E) cubic ZnS-type compounds. The ${{R}^{2}}$ (Determination Coefficient) and MAE (Mean Absolute Error) for NaCl-type compounds are 0.93 and 0.65 eV, and 0.79 and 0.35 eV for cubic ZnS-type compounds, respectively. Tendency of ${{E}_{\text{g}1}}$ and ${{E}_{\text{g}2}}$ vs experimental band gap for (F) NaCl-type and (G) cubic ZnS-type compounds. The grey dotted lines are reflected trends.
[1] | Y. Su, H. Fu, Y. Bai, X. Jiang, J. Xie, Acta Metall. Sin. 56 (2020) 1313-1323. |
[2] |
Y. Su, D. Zhang, Q. Feng, J. Xie, Engineering (2022), doi: 10.1016/j.eng.2021.12.008.
DOI URL |
[3] | J. Xie, Y. Su, D. Xue, X. Jiang, H. Fu, H. Huang, Acta Metall. Sin. 57 (2021) 1343-1361. |
[4] | C. Wen, C.X. Wang, Y. Zhang, S. Antonov, D.Z. Xue, T. Lookman, Y.J. Su, Acta Mater. 212 (2021) 116917. |
[5] | D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman, Nat. Com- mun. 7 (2016) 11241. |
[6] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[7] | P.V. Balachandran, J. Theiler, J.M. Rondinelli, T. Lookman, Sci. Rep. 5 (2015) 1-16. |
[8] | A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013) 011002. |
[9] | P.D.F. Adler, Nature 533 (2017) 73-77. |
[10] | A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.M. Ho, V. Antropov, C. Z. Wang, M.J. Kramer, C. Long, I. Takeuchi, Sci. Rep. 4 (2014) 6367. |
[11] | C.C. Chang, C.J. Lin, ACM Trans. Intell. Syst. Technol. 2 (2011) 1-27. |
[12] | Y.L. Pavlov, Random For. (2019) 1-122. |
[13] | G. Montavon, Lect. Notes Phys. 968 (2020) 37-62. |
[14] | D. Xue, P.V. Balachandran, R. Yuan, T. Hu, X. Qian, E.R. Dougherty, T. Lookman, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13301-13306. |
[15] | V. Sharma, C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R. Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, R. Ramprasad, Nat. Commun. 5 (2014) 1-8. |
[16] |
C. Kim, G. Pilania, R. Ramprasad, Chem. Mater. 28 (2016) 1304-1311.
DOI URL |
[17] |
Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, Y. Su, Acta Mater. 185 (2020) 528-539.
DOI URL |
[18] | C. Kim, G. Pilania, R. Ramprasad, J. Phys. Chem. C 120 (2016) 14575-14580. |
[19] | R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler L.M. Ghiringhelli, Phys. Rev. Mater. 2 (2018) 083802. |
[20] | J.R. Koza, R. Poli, in: E.K. Burke, G. Kendall (Eds.), Search Methodologies, Springer, Boston, MA, 2005, pp. 127-164. |
[21] | J. Bongard, H. Lipson, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 9943-9948. |
[22] |
C.H. Wu, H.J. Chou, W.H. Su, Eng. Appl. Artif. Intell. 21 (2008) 1347-1359.
DOI URL |
[23] |
V. Ceperic, N. Bako, A. Baric, Expert Syst. Appl. 41 (2014) 7061-7067.
DOI URL |
[24] |
L. Ward, C. Wolverton, Curr. Opin. Solid State Mater. Sci. 21 (2017) 167-176.
DOI URL |
[25] |
Y. Wang, N. Wagner, J.M. Rondinelli, MRS Commun. 9 (2019) 793-805.
DOI URL |
[26] | B. Weng, Z. Song, R. Zhu, Q. Yan, Q. Sun, C.G. Grice, Y. Yan, W.J. Yin, Nat. Com-mun. 11 (2020) 3513. |
[27] | F. Yuan, T. Mueller, Sci. Rep. 7 (2017) 17594. |
[28] |
C. Halder, L. Madej, M. Pietrzyk, N. Chakraborti, Mater. Manuf. Process. 30 (2015) 552-562.
DOI URL |
[29] |
M. Kovačič, B. Šarler, Mater. Manuf. Process. 24 (2009) 369-374.
DOI URL |
[30] | E. Kabliman, A.H. Kolody, M. Kommenda, G. Kronberger,AIP Conf. Proc. 2113 (2019) 180009. |
[31] |
S. Sun, R. Ouyang, B. Zhang, T.Y. Zhang, MRS Bull. 44 (2019) 559-564.
DOI URL |
[32] | C. Ferreira, in: Gene Expression Programming: Mathematical Modeling By An Artificial Intelligence, Springer, Berlin, 2006, pp. 1-26. |
[33] | A .A. Javadi M. Rezania Adv. Eng. Informatics 23 (2009) 442-451. |
[34] | M. Schmidt, H. Lipson, Science 324 (2009) 81-85. |
[35] |
N. Kumar, P. Rajagopalan, P. Pankajakshan, A. Bhattacharyya, S. Sanyal, J. Bal-achandran, U.V. Waghmare, Chem. Mater. 31 (2019) 314-321.
DOI URL |
[36] | H. Jiang, Prog. Chem. 24 (2012) 910-927. |
[37] | S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder, Phys. Rev. Lett. 91 (2003) 135503. |
[38] | G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature 392 (1998) 694-696. |
[39] | M. Shishkin, G. Kresse, Phys. Rev. B 75 (2007) 235102. |
[40] |
Y. Zhuo, A. Mansouri Tehrani, J. Brgoch, J. Phys. Chem. Lett. 9 (2018) 1668-1673.
DOI URL PMID |
[41] |
N.N. Kiselyova, V.A. Dudarev, M.A. Korzhuyev, Inorg. Mater. Appl. Res. 7 (2016) 34-39.
DOI URL |
[42] |
A. Mishra, S. Satsangi, A.C. Rajan, H. Mizuseki, K.R. Lee, A.K. Singh, J. Phys. Chem. Lett. 10 (2019) 780-785.
DOI URL |
[43] |
J. de Boer, Am. J. Phys. 47 (1979) 818-819.
DOI URL |
[44] | S. Sun, B. Zhang, J. Wang, K. Li, Y. Gao, T.Y. Zhang, J. Chemom. 35 (2021) e3314. |
[45] | G. Pilania, A. Mannodi-Kanakkithodi, B.P. Uberuaga, R. Ramprasad, J.E. Guber-natis, T. Lookman, Sci. Rep. 6 (2016) 19375. |
[46] | G. Pilania, J.E. Gubernatis, T. Lookman, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015) 214302. |
[47] | Y. Dong, C. Wu, C. Zhang, Y. Liu, J. Cheng, J. Lin, NPJ Comput. Mater. 5 (2019) 26. |
[48] | A .C. Rajan A. Mishra S. Satsangi R. Vaish H. Mizuseki, K.R. Lee, A.K. Singh, Chem. Mater. 30 (2018) 4031-4038. |
[49] | L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114 (2015) 105503. |
[50] | https://www.webelements.com (2021.9.17) |
[51] | https://www.periodictable.com. (2021.9.17) |
[52] | https://mpds.io . (2021.9.17) |
[53] | R. Riolo, T. Soule, B. Worzel, in: Genetic Programming Theory and Practice VI, Springer Science & Business Media, Berlin, 2008, pp. 30-42. |
[54] |
S.S. Batsanov, J. Struct. Chem. 19 (1979) 826-829.
DOI URL |
[55] | W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. Snyder, Angew. Chem. Int. Ed. 55 (2016) 6826-6841. |
[1] | Dingshuai Feng, Biaohong Huang, Lingli Li, Xiaoqi Li, Youdi Gu, Weijin Hu, Zhidong Zhang. The effects of Eu3+ doping on the epitaxial growth and photovoltaic properties of BiFeO3 thin films [J]. J. Mater. Sci. Technol., 2022, 106(0): 49-55. |
[2] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
[3] | Elham Gharibshahi, Brandon D. Young, Amar S. Bhalla, Ruyan Guo. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles [J]. J. Mater. Sci. Technol., 2020, 57(0): 180-187. |
[4] | Li-Ping Ding, Peng Shao, Lin-Tai Yang, Wei Guo Sun, Fang-Hui Zhang, Cheng Lu. Micromechanism study on electronic and magnetic properties of silicene regulated by oxygen [J]. J. Mater. Sci. Technol., 2019, 35(8): 1803-1808. |
[5] | Ali Muhammad, Ni Zhenyi, Cottenier Stefaan, Liu Yong, Pi Xiaodong, Yang Deren. Formation, Structures and Electronic Properties of Silicene Oxides on Ag(111) [J]. J. Mater. Sci. Technol., 2017, 33(7): 751-757. |
[6] | Lili Liu, Miaoqing Qing, Yibo Wang, Shimou Chen. Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 599-606. |
[7] | Yaqin Wang, Wu Tang, Lan Zhang. Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films [J]. J. Mater. Sci. Technol., 2015, 31(2): 175-181. |
[8] | Somnath Middya, Animesh Layek, Arka Dey, Partha Pratim Ray. Synthesis of Nanocrystalline FeS2 with Increased Band Gap for Solar Energy Harvesting [J]. J. Mater. Sci. Technol., 2014, 30(8): 770-775. |
[9] | Jyoti Rani, Piyush Kumar Patel, Nidhi Adhlakha, Hemant Singh, K.L. Yadav, Satya Prakash. Mo6+ Modified (K0.5Na0.5)NbO3 Lead Free Ceramics: Structural, Electrical and Optical Properties [J]. J. Mater. Sci. Technol., 2014, 30(5): 459-465. |
[10] | D.A. Mota, G. Hema Chandra, J. Ventura, A. Guedes, J. Pérez de la Cruz. Influence of Process Parameters on the RF Sputtered GaP Thin Films [J]. J. Mater. Sci. Technol., 2013, 29(9): 821-829. |
[11] | Hua Zhang,Qiuhua Nie,Shixun Dai,Xiang Shen,XunsiWang,Xianghua Zhang. CsCl Effected Ultrafast Third-order Optical Nonlinearities of GeS2-Sb2S3 Chalcogenide Glasses [J]. J Mater Sci Technol, 2009, 25(06): 772-776. |
[12] | Zhigang ZHANG, Hongcai WU, Lingjie MENG, Wenhui YI. Synthesis of Poly (3-acetylpyrrolyl methine) with Azobenzene Side Groups and Study on Its Third-order Nonlinear Optical Property [J]. J Mater Sci Technol, 2005, 21(05): 715-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||