J. Mater. Sci. Technol. ›› 2022, Vol. 122: 84-90.DOI: 10.1016/j.jmst.2021.12.062
• Research Article • Previous Articles Next Articles
Kangyu Zhanga,b, Lichang Yina,b,c,*(), Gang Liua,b,*(
), Hui-Ming Chenga
Received:
2021-11-10
Revised:
2021-12-19
Accepted:
2021-12-21
Published:
2022-09-20
Online:
2022-03-20
Contact:
Lichang Yin,Gang Liu
About author:
gangliu@imr.ac.cn (G. Liu).Kangyu Zhang, Lichang Yin, Gang Liu, Hui-Ming Cheng. Accurate structural descriptor enabled screening for nitrogen and oxygen vacancy codoped TiO2 with a large bandgap narrowing[J]. J. Mater. Sci. Technol., 2022, 122: 84-90.
Fig. 1. (a) Shortest paths for charge compensation from three neighboring Ti atoms (denoted as Ti1, Ti2, and Ti3) of VO to a N dopant (denoted as N1). There are 5, 1, and 3 different shortest paths from Ti1, Ti2, and Ti3 to N1, respectively. Different shortest paths between two atoms are denoted by line segments with different thicknesses and in different colors. (b) Three shortest paths from the three neighboring Ti atoms to the N1 dopant, respectively. (c) and (d) VO position independent N-dopant spatial orderings in Type-1 and Type-2 doping configurations, respectively. Different doping configurations in the same type (Type-1 or Type-2) only differ by the spatial positions of VO.
Fig. 2. (a) Configuration grouping in the 2D plane spanned by PC1 and PC2. Each data point corresponds to one of the 773 doping configurations. Type-1 and Type-2 doping configurations are highlighted in light green and purple markers, respectively. (b) Ti-O-Ti and (c) O-Ti-O atomic fragment with a bond angle of 154.7° and 92.8°, respectively.
Fig. 3. XGBoost models predicted and DFT calculated (a) total energy per atom, (b) bandgap, and (c) electron effective mass for doping configurations in the training (diamonds) set and the test set (triangles).
Fig. 4. Schematic illustration of the atomic structures of (a) one Type-1 and (b) one Type-2 doping configuration in anatase TiO2. (c) HSE06 band structure and (d) HSE06 density of states (DOS) of the doping configuration in (a). (f) HSE06 band structure and (g) HSE06 DOS of the doping configuration in (b). (e) HSE06 DOS of pristine anatase TiO2. The 3s core levels of the Ti atoms have been aligned to each other for examining the relative positions of the energy levels.
Fig. 5. (a) Energy band diagram of pristine and three doping configurations in rutile TiO2. Schematic illustrations of the atomic structures of (b) one Type-1-0, (c) one Type-1-1, and (d) one Type-2 doping configuration. Type-1-0 and Type-1-1 are two different N-dopant spatial orderings resemble the Type-1 doping configurations in anatase. Type-2 is the N-dopant spatial ordering resembles the Type-2 doping configurations in anatase. HSE06 DOSs of (e) pristine rutile TiO2, (f) the Type-1-0, (g) Type-1-1, and (h) Type-2 doping configuration. The 3s levels of the Ti atoms which are practically unaffected by doping, have been aligned to each other for examining the relative positions of the energy levels.
[1] | A. Fujishima, K. Honda, Nature 238 (1972) 37-38. |
[2] |
X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891-2959.
DOI URL |
[3] | W.X. Ouyang, F. Teng, X.S. Fang, Adv. Funct. Mater. 28 (2018) 1707178. |
[4] | Z.L. Li, M.K. Joshi, J.X. Chen, Z.M. Zhang, Z.Q. Li, X.S. Fang, Adv. Funct. Mater. 30 (2020) 2005291. |
[5] | X.J. Xu, J.X. Chen, S. Cai, Z.H. Long, Y. Zhang, L.X. Su, S.S. He, C.Q. Tang, P. Liu, H.S. Peng, X.S. Fang, Adv. Mater. 30 (2018) 1803165. |
[6] | R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271. |
[7] | S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297 (2002) 2243-2245. |
[8] |
J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14 (2002) 3808-3816.
DOI URL |
[9] |
T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A Gen. 265 (2004) 115-121.
DOI URL |
[10] |
Y. Cui, H. Du, L.S. Wen, J. Mater. Sci. Technol. 24 (2008) 675-689.
DOI URL |
[11] |
M.S. Zhu, C.Y. Zhai, L.Q. Qiu, C. Lu, A.S. Paton, Y.K. Du, M.C. Goh, ACS Sustain. Chem. Eng. 3 (2015) 3123-3129.
DOI URL |
[12] |
C.Y. Xu, Y.W. Zhang, J.C. Chen, J.Y. Lin, X.H. Zhang, Z.H. Wang, J.H. Zhou, Appl. Catal. B Environ. 204 (2017) 324-334.
DOI URL |
[13] |
E.B. Simsek, Appl. Catal. B Environ. 200 (2017) 309-322.
DOI URL |
[14] |
A. Sinhamahapatra, H.Y. Lee, S.H. Shen, S.S. Mao, J.S. Yu, Appl. Catal. B Environ. 237 (2018) 613-621.
DOI URL |
[15] |
J. Matos, J. Ocares-Riquelme, P.S. Poon, R. Montana, X. Garcia, K. Campos, J. C. Hernandez-Garrido, M.M. Titirici, J. Colloid Interface Sci. 547 (2019) 14-29.
DOI URL |
[16] |
Q.Z. Gao, F.Y. Si, S.S. Zhang, Y.P. Fang, X.B. Chen, S.Y. Yang, Int. J. Hydrog. Energy 44 (2019) 8011-8019.
DOI URL |
[17] | D.N. Tafen, J. Wang, N.Q. Wu, J.P. Lewis, Appl. Phys. Lett. 94 (2009) 093101. |
[18] |
J. Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A. Manivannan, M.J. Zhi, M. Li, N.Q. Wu, J. Am. Chem. Soc. 131 (2009) 12290-12297.
DOI URL PMID |
[19] |
G. Liu, L.C. Yin, J.Q. Wang, P. Niu, C. Zhen, Y.P. Xie, H.M. Cheng, Energy Environ. Sci. 5 (2012) 9603-9610.
DOI URL |
[20] | C. Li, B. Wang, H. Cui, J.P. Zhai, Q. Li, J. Mater. Sci. Technol. 29 (2013) 835-840. |
[21] |
W. Qian, P.A. Greaney, S. Fowler, S.K. Chiu, A.M. Goforth, J. Jiao, ACS Sustain. Chem. Eng. 2 (2014) 1802-1810.
DOI URL |
[22] | H.R. Chen, J.A. Dawson, J. Phys. Chem. C 119 (2015) 15890-15895. |
[23] | H. Zeng, J.J. Xie, H. Xie, B.L. Su, M.H. Wang, H. Ping, W.M. Wang, H. Wang, Z.Y. Fu, J. Mater. Chem. A 3 (2015) 19588-19596. |
[24] | P.A.K. Reddy, P.V.L. Reddy, K.H. Kim, M.K. Kumar, C. Manvitha, J.J. Shim, J. Ind. Eng. Chem. 53 (2017) 253-260. |
[25] |
T.K. Jia, F. Fu, D.S. Yu, J.L. Cao, G. Sun, Appl. Surf. Sci. 430 (2018) 438-447.
DOI URL |
[26] | C. Foo, Y.Y. Li, K. Lebedev, T.Y. Chen, S. Day, C. Tang, S.C.E. Tsang, Nat. Commun. 12 (2021) 661. |
[27] | C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70 (2004) 085116. |
[28] | W.J. Yin, S.H. Wei, M.M. Al-Jassim, Y.F. Yan, Phys. Rev. Lett. 106 (2011) 066801. |
[29] | M. Niu, D.J. Cheng, D.P. Cao, J. Phys. Chem. C 117 (2013) 15911-15917. |
[30] | M. Batzill, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96 (2006) |
[31] | E. Finazzi, C. Di Valentin, A. Selloni, G. Pacchioni, J. Phys. Chem. C 111 (2007) 9275-9282. |
[32] | A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Appl. Phys. Lett. 95 (2009) 262111. |
[33] |
Y. Wang, C.X. Feng, M. Zhang, J.J. Yang, Z.J. Zhang, Appl. Catal. B Environ. 100 (2010) 84-90.
DOI URL |
[34] |
X.Y. Song, D. He, W.Q. Li, Z.J. Ke, J.C. Liu, C.Y. Tang, L. Cheng, C.Z. Jiang, Z.Y. Wang, X.H. Xiao, Angew. Chem. Int. Ed. 58 (2019) 16660-16667.
DOI URL |
[35] |
S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni, J. Am. Chem. Soc. 128 (2006) 15666-15671.
URL PMID |
[36] | M. Harb, P. Sautet, P. Raybaud, J. Phys. Chem. C 115 (2011) 19394-19404. |
[37] |
N. Umezawa, J.H. Ye, Phys. Chem. Chem. Phys. 14 (2012) 5924-5934.
DOI URL PMID |
[38] | H.C. Wu, Y.S. Lin, S.W. Lin, Int. J. Photoenergy (2013) 2013. |
[39] | L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114 (2015) 105503. |
[40] | Q. Zhou, P.Z. Tang, S.X. Liu, J.B. Pan, Q.M. Yan, S.C. Zhang, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E6411-E6417. |
[41] | K.Y. Zhang, L.C. Yin, G. Liu, Comput. Mater. Sci. 186 (2021) 110071. |
[42] | X.G. Zhao, K. Zhou, B.Y. Xing, R.T. Zhao, S.L. Luo, T.S. Li, Y.H. Sun, G.R. Na, J.H. Xie, X.Y. Yang, X.J. Wang, X.Y. Wang, X. He, J. Lv, Y.H. Fu, L.J. Zhang, Sci- ence Bull. 66 (2021) 1973-1985. |
[43] |
K. Pearson, Philos. Mag. 2 (1901) 559-572.
DOI URL |
[44] |
D.C. Lonie, E. Zurek, Comput. Phys. Commun. 183 (2012) 690-697.
DOI URL |
[45] | C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour- napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Rio, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant, Nature 585 (2020) 357-362. |
[46] |
S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68 (2013) 314-319.
DOI URL |
[47] | A .A. Hagberg D.A. Schult P.J. Swart, in:Proceedings of the 7th Python in Sci- ence conference (SciPy 2008), Pasadena, CA, 2008, pp. 11-15. |
[48] | A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Du- lak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiotz, O. Schutt, M. Strange, K.S. Thygesen, T. Vegge, L. Vil- helmsen, M. Walter, Z.H. Zeng, K.W. Jacobsen, J. Phys. Condes. Matter 29 (2017) 273002. |
[49] | A.M. Ganose, A.J. Jackson, D.O. Scanlon, J. Open Source Softw. 3 (2018) 717. |
[50] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12 (2011) 2825-2830. |
[51] | T.Q. Chen, C.Guestrin, in: Kdd’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785-794. |
[52] | J.D. Hunter, Comput. Sci. Eng. 9 (2007) 90-95. |
[53] |
K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272-1276.
DOI URL |
[54] |
P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[55] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[56] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI URL PMID |
[57] |
G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269.
DOI URL PMID |
[58] |
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[59] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL PMID |
[60] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[61] | A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, C.G. Van de Walle, Phys. Rev. B 81 (2010) 085212. |
[62] | A.J. Cohen, P. Mori-Sanchez, W.T. Yang, Science 321 (2008) 792-794. |
[63] |
J. Heyd, G.E. Scuseria, J. Chem. Phys. 121 (2004) 1187-1192.
DOI URL |
[64] |
J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207-8215.
DOI URL |
[65] | J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124 (2006) 219906. |
[66] |
B.G. Janesko, T.M. Henderson, G.E. Scuseria, Phys. Chem. Chem. Phys. 11 (2009) 443-454.
DOI URL |
[1] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[2] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[3] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[4] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[5] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[6] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
[7] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[8] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[9] | Yuan Wang, Jianfei Xiao, Hanzhi Wang, Tian C. Zhang, Shaojun Yuan. Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance [J]. J. Mater. Sci. Technol., 2022, 99(0): 73-81. |
[10] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
[11] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[12] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
[13] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[14] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[15] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||