J. Mater. Sci. Technol. ›› 2022, Vol. 122: 91-100.DOI: 10.1016/j.jmst.2021.12.067
• Research Article • Previous Articles Next Articles
Nan Lia,b, Qiuhui Zhua, Guimei Liub, Qi Zhaoa, Haiqin Lvb, Mingzhe Yuanb,*(), Qingguo Mengb, Yingtang Zhouc, Jingkun Xud, Chuanyi Wanga,b,*(
)
Received:
2021-10-28
Revised:
2021-12-26
Accepted:
2021-12-31
Published:
2022-09-20
Online:
2022-03-22
Contact:
Mingzhe Yuan,Chuanyi Wang
About author:
wangchuanyi@sust.edu.cn (C. Wang).Nan Li, Qiuhui Zhu, Guimei Liu, Qi Zhao, Haiqin Lv, Mingzhe Yuan, Qingguo Meng, Yingtang Zhou, Jingkun Xu, Chuanyi Wang. Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure[J]. J. Mater. Sci. Technol., 2022, 122: 91-100.
Fig. 1. Photocatalytic activity of the SBT samples under full spectrum (a) and visible light irradiation (b) and successive cycling test on the SBT-800 sample (c) and XRD patterns of SBT-800 sample before and after stability test (d).
Fig. 2. (a) XRD patterns of the SBT samples prepared at different calcination temperatures. (b) The NO removal efficiency as a function of the (2 0 0)/(0 0 10) peak intensity ratio on the SBT photocatalysts under Xe lamp illumination with and without 420 nm filter. (c) TEM image of the SBT-800 sample. (d) HRTEM and SAED image of the SBT-800 sample.
Fig. 8. (a) Effects of different radical scavengers on the NO removal over the SBT-800 sample, (b) ESR spectra recorded for •O2-, (c) PL spectra and (d) photocurrent response of the SBT samples.
Fig. 10. DOS (a), electrostatic potentials, work functions (b), computational adsorption models (c) and adsorption energy of NO (d) on (2 0 0), (0 0 1)-BiO, and (0 0 1)-TaO of SrBi2Ta2O9 substrates.
[1] | H. Li, J.G. Shi, K. Zhao,L.Z. Zhang, Nanoscale 6 (2014) 14168-14173. |
[2] | R. Hailili, Z.Q. Wang, M.Y. Xu, Y.H. Wang, X.Q. Gong, T. Xu, C.Y. Wang,J. Mater. Chem. A 5 (2017) 21275-21290. |
[3] | Y.G. Zhou, Y.F. Zhang, M.S. Lin, J.L. Long, Z.Z. Zhang, H.X. Lin, J.C.S. Wu, X. X. Wang,Nat. Commun. 6 (2015) 8. |
[4] | X. Jurado, N. Reiminger, J. Vazquez, C. Wemmert, M. Dufresne, B. Nadège, W. Jonathan,Atmos. Environ. 221 (2019) 117087. |
[5] |
Y.Y. Duan, M. Zhang, L. Wang, F. Wang, L.P. Yang, X.Y. Li, C.Y. Wang,Appl. Catal. B- Environ. 204 (2017) 67-77.
DOI URL |
[6] |
L. Han, S. Cai, M. Gao, J.-y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang,Chem. Rev. 119 (2019) 10916-10976.
DOI URL |
[7] |
M. Signoretto, E. Ghedini, V. Trevisan, C.L. Bianchi, M. Ongaro, G. Cruciani,Appl. Catal. B-Environ. 95 (2010) 130-136.
DOI URL |
[8] | A. Gandolfo, V. Bartolomei, E. Gomez Alvarez, S. Tlili, S. Gligorovski, J. Kleff- mann, H. Wortham,Appl. Catal. B-Environ. 166 (2015) 84-90. |
[9] |
S. Li, L. Chen, Z. Ma, G. Li, D. Zhang,Trans. Tianjin Univ. 27 (2021) 295-312.
DOI URL |
[10] |
M. Shi, G.N. Li, J.M. Li, X. Jin, X.P. Tao, B. Zeng, E.A. Pidko, R.G. Li, C. Li,Angew. Chem. Int. Edit. 59 (2020) 6590-6595.
DOI URL |
[11] | D.E. Wang, H.F. Jiang, X. Zong, Q.A. Xu, Y. Ma, G.L. Li, C. Li,Chem.Eur. J. 17 (2011) 1275-1282. |
[12] |
G. Kresse, J. Furthmüller,Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[13] | G. Kresse, J. Furthmüller,Phys. Rev. B: Condens. Matter 54 (1996) 11169-11186. |
[14] |
J.P. Perdew, K. Burke, M. Ernzerhof,Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[15] |
G. Kresse, D. Joubert,Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[16] |
P.E. Blöchl,Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[17] | S. Grimme, J. Antony, S. Ehrlich, H. Krieg,J. Chem. Phys. 132 (2010) 19. |
[18] |
T.F. Zhou, J.C. Hu, J.L. Li,Appl. Catal. B-Environ. 110 (2011) 221-230.
DOI URL |
[19] | Y.S. Xu, X. He, H. Zhong, D.J. Singh, L.J. Zhang, R.H. Wang,Appl. Catal. B-Envi- ron. 246 (2019) 349-355. |
[20] |
Y.Y. Li, J.P. Liu, X.T. Huang, G.Y. Li,Cryst. Growth Des. 7 (2007) 1350-1355.
DOI URL |
[21] |
B.F. Luo, D.B. Xu, D. Li, G.L. Wu, M.M. Wu, W.D. Shi, M. Chen,ACS Appl. Mater. Inter. 7 (2015) 17061-17069.
DOI URL |
[22] |
Z.Y. Zhang, D.L. Jiang, D. Li, M.Q. He, M. Chen,Appl. Catal. B-Environ. 183 (2016) 113-123.
DOI URL |
[23] | J. Ding, L. Wang, Q.Q. Liu, Y.Y. Chai, X. Liu, W.L. Dai,Appl. Catal. B-Environ. 176 (2015) 91-98. |
[24] |
T. Wang, X.Q. Liu, C.C. Ma, Z. Zhu, Y. Liu, Z. Liu, M.B. Wei, X.X. Zhao, H.J. Dong, P.W. Huo, C.X. Li, Y.S. Yan,J. Alloy. Compd. 752 (2018) 106-114.
DOI URL |
[25] |
K. Wang, G.K. Zhang, J. Li, Y. Li, X.Y. Wu,ACS Appl. Mater. Inter. 9 (2017) 43704-43715.
DOI URL |
[26] | H. Liu, H.L. Zhou, H.D. Li, X.T. Liu, C.J. Ren, Y.C. Liu, W.J. Li, M. Zhang,J. Taiwan Inst.Chem. E 95 (2019) 94-102. |
[27] |
S.J. Wu, J.W. Xiong, J.G. Sun, Z.D. Hood, W. Zeng, Z.Z. Yang, L. Gu, X.X. Zhang, S.Z. Yang,ACS Appl. Mater. Inter. 9 (2017) 16620-16626.
DOI URL |
[28] |
K. Hadjiivanov, H. Knözinger,Phys. Chem. Chem. Phys. 2 (200 0) 2803-2806.
DOI URL |
[29] |
S.J. Huang, A.B. Walters, M. Vannice,J. Catal. 192 (2000) 29-47.
DOI URL |
[30] |
H. Wang, W.D. Zhang, X.W. Li, J.Y. Li, W.L. Cen, Q.Y. Li, F. Dong,Appl. Catal. B-Environ. 225 (2018) 218-227.
DOI URL |
[31] |
X.W. Li, W.D. Zhang, J.Y. Li, G.M. Jiang, Y. Zhou, S. Lee, F. Dong,Appl. Catal. B-Environ. 241 (2019) 187-195.
DOI URL |
[32] |
M. Kantcheva, A. Vakkasoglu,J. Catal. 223 (2004) 352-363.
DOI URL |
[33] |
Y. Huang, Y.X. Gao, Q. Zhang, J.J. Cao, R.J. Huang, W.K. Ho, S.C. Lee,Appl. Catal. A-Gen. 515 (2016) 170-178.
DOI URL |
[34] |
Y.J. Sun, H. Wang, Q. Xing, W. Cui, J.Y. Li, S.J. Wu, L.D. Sun,Chinese J. Catal. 40 (2019) 647-655.
DOI URL |
[35] |
Y. Zhou, Z.Y. Zhao, F. Wang, K. Cao, D.E. Doronkin, F. Dong, J.D. Grunwaldt,J. Hazard. Mater. 307 (2016) 163-172.
DOI URL |
[1] | Xi. Rao, L. Du, J.J. Zhao, X.D. Tan, Y.X. Fang, L.Q. Xu, Y.P. Zhang. Hybrid TiO2/AgNPs/g-C3N4 nanocomposite coatings on TC4 titanium alloy for enhanced synergistic antibacterial effect under full spectrum light [J]. J. Mater. Sci. Technol., 2022, 118(0): 35-43. |
[2] | Yang Guo, Qixin Zhou, Xiaolin Chen, Yunzhi Fu, Shenyu Lan, Mingshan Zhu, Yukou Du. Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J]. J. Mater. Sci. Technol., 2022, 119(0): 53-60. |
[3] | Weixin Huang, Zhipeng Li, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 120(0): 89-98. |
[4] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[5] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[6] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[7] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[8] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[9] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[10] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[11] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[12] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[13] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[14] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[15] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||