J. Mater. Sci. Technol. ›› 2022, Vol. 120: 89-98.DOI: 10.1016/j.jmst.2021.12.028
• Research Article • Previous Articles Next Articles
Weixin Huang1, Zhipeng Li1, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li()
Received:
2021-08-12
Revised:
2021-11-24
Accepted:
2021-12-16
Published:
2022-09-01
Online:
2022-03-01
Contact:
Qin Li
About author:
* E-mail address: liqin0518@mail.scuec.edu.cn (Q. Li).1 The authors equally contribute to this work.
Weixin Huang, Zhipeng Li, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production[J]. J. Mater. Sci. Technol., 2022, 120: 89-98.
Fig. 1. XRD patterns of (a) the Ti3AlC2, Ti3C2 and (b) the prepared ZnIn2S4 and ZTx samples. (c) Raman spectra of the ZnIn2S4, ZT10 and Ti3C2 samples.
Sample | Actual molar ratio of Ti3C2 to ZnIn2S4 (%) | Mass of sample for HERa (mg) | ABET (m2 g - 1) | RH2 (μmol h - 1) | RH2 per mass (μmol h - 1 g - 1) | RH2 per ABET (μmol h - 1 m - 2) | AQE (%) |
---|---|---|---|---|---|---|---|
ZnIn2S4 | 0 | 100 | 58.4 | 36.4 | 364.4 | 6.2 | 9.5 |
ZT5 | 3.8 | 100 | 69.8 | 72.2 | 721.6 | 10.3 | 17.6 |
ZT10 | 6.6 | 100 | 73.2 | 97.9 | 978.7 | 13.4 | 24.2 |
ZT20 | 13.2 | 100 | 62.0 | 72.6 | 726.1 | 11.7 | 17.9 |
ZT40 | 24.5 | 100 | 61.1 | 58.5 | 585.4 | 9.6 | 12.3 |
ZT80 | 56.8 | 100 | 60.6 | 35.4 | 353.6 | 5.8 | 9.3 |
Table 1. Actual Ti3C2 to ZnIn2S4 ratios in the composite and comparison of photocatalytic H2 production performance of the prepared samples.
Sample | Actual molar ratio of Ti3C2 to ZnIn2S4 (%) | Mass of sample for HERa (mg) | ABET (m2 g - 1) | RH2 (μmol h - 1) | RH2 per mass (μmol h - 1 g - 1) | RH2 per ABET (μmol h - 1 m - 2) | AQE (%) |
---|---|---|---|---|---|---|---|
ZnIn2S4 | 0 | 100 | 58.4 | 36.4 | 364.4 | 6.2 | 9.5 |
ZT5 | 3.8 | 100 | 69.8 | 72.2 | 721.6 | 10.3 | 17.6 |
ZT10 | 6.6 | 100 | 73.2 | 97.9 | 978.7 | 13.4 | 24.2 |
ZT20 | 13.2 | 100 | 62.0 | 72.6 | 726.1 | 11.7 | 17.9 |
ZT40 | 24.5 | 100 | 61.1 | 58.5 | 585.4 | 9.6 | 12.3 |
ZT80 | 56.8 | 100 | 60.6 | 35.4 | 353.6 | 5.8 | 9.3 |
Fig. 2. (a) FESEM and (b) HRTEM images of the prepared ZT10 sample. (c) HAADF-STEM image of the ZT10 sample and the EDS mapping images of its Zn, In, S, and Ti atoms.
Fig. 3. FESEM images of the ZT10 sample with the solvothermal time for (a) 10 min, (b) 1 h, and (c) 12 h, respectively. (d) FESEM image of the ZT80 sample.
Fig. 5. Photographs of (a) the automatic online trace gas analysis system (Labsolar-6A, Beijing Perfectlight Technology Co., Ltd.) and (b) the multi-channel photochemical reaction system (PCX-50B, Beijing Perfectlight Technology Co., Ltd.). (c) Dependence of the amount of H2 production on the concentration of the ZT10 sample in the system. (d) Comparison of the photocatalytic H2 production rates of the prepared samples.
Fig. 6. (a) Steady-state PL spectra of the ZnIn2S4, ZT5, ZT10, ZT40 and ZT80 samples and (inset) its local magnification. (b) Time-resolved transient photoluminescence decay of the ZnIn2S4 and ZT10 samples. (c) TPR plots and (d) EIS plots of the ZnIn2S4, ZT5, ZT10, ZT40 and ZT80 samples.
Fig. 8. (a) DRS spectra of the prepared samples and (b) corresponding Tauc plots of ZnIn2S4 and ZT10. Mott-Schottky plots of (c) ZnIn2S4 and (d) ZT10 at a frequency of 1000 Hz, 2000 Hz and 3000 Hz in Na2SO4 (0.5 M). (e) CPD values of the Ti3C2, ZT10, and ZnIn2S4 samples. (f) LSV curves of the ZnIn2S4 and ZT10 samples.
[1] |
X. Li, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603-2636.
DOI URL |
[2] |
Y.J. Li, L. Ding, Z.Q. Liang, Y.J. Xue, H.Z. Cui, J. Tian, Chem. Eng. J. 383 (2020) 123178.
DOI URL |
[3] |
J.A. Khan, M. Sayed, N.S. Shah, S. Khan, Y.X. Zhang, G. Boczkaj, H.M. Khan, D.D. Dionysiou, Appl. Catal. B-Environ. 265 (2020) 118557.
DOI URL |
[4] |
Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[5] | C. Hu, S.C. Tu, N. Tian, T.Y. Ma, Y.H. Zhang, H.W. Huang, Angew. Chem. Int. Ed. Engl. 60 (2021) 2-22. |
[6] |
Y. Kumar, R. Kumar, P. Raizada, A.A.P. Khan, Q.V. Le, P. Singh, V.-.H. Nguyen, J. Mater. Sci. Technol. 87 (2021) 234-257.
DOI URL |
[7] |
P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, S.C. Pillai, ACS Energy Lett 4 (2019) 1687-1709.
DOI URL |
[8] |
J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
DOI URL |
[9] |
Q. Li, X. Li, S. Wageh, A.A Al-Ghamdi, J.G. Yu, Adv. Energy Mater. 5 (2015) 1500010.
DOI URL |
[10] |
Y.Y. Qin, H. Li, J. Lu, F.Y. Meng, C.C. Ma, Y.S. Yan, M.J. Meng, Chem. Eng. J. 384 (2020) 123275.
DOI URL |
[11] |
W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Nanoscale 8 (2016) 3711-3719.
DOI URL PMID |
[12] |
S.Q. Zhang, X. Liu, C.B. Liu, S.L. Luo, L.L. Wang, T. Cai, Y.X. Zeng, J.L. Yuan, W.Y. Dong, Y. Pei, Y.T. Liu, ACS Nano 12 (2018) 751-758.
DOI URL |
[13] |
J.G. Wang, Y.J. Chen, W. Zhou, G.H. Tian, Y.T. Xiao, H.Y. Fu, H.G. Fu, J. Mater. Chem. A 5 (2017) 8451-8460.
DOI URL |
[14] |
J. Wang, S.J. Sun, R. Zhou, Y.Z. Li, Z.T. He, H. Ding, D.M. Chen, W.H. Ao, J. Mater. Sci. Technol. 78 (2021) 1-19.
DOI URL |
[15] | L.J. Lai, F.S. Xing, C.C. Cheng, C.J. Huang, Adv. Mater. Interfaces 8 (2021) 2100052. |
[16] |
B.B. Liu, X.J. Liu, L. Li, J.W. Li, C. Li, Y.Y. Gong, L.Y. Niu, X.S. Zhao, C.Q. Sun, Chin. J. Catal. 39 (2018) 1901-1909.
DOI URL |
[17] |
Y.Y. Qin, H. Li, J. Lu, Y.H. Feng, F.Y. Meng, C.C. Ma, Y.S. Yan, M.J. Meng, Appl. Catal. B-Environ. 277 (2020) 119254.
DOI URL |
[18] |
J.W. Pan, Z.J. Guan, J.J. Yang, Q.Y. Li, Chin. J. Catal. 41 (2020) 200-208.
DOI URL |
[19] |
C. Du, B. Yan, Z.Y. Lin, G.W. Yang, J. Mater. Chem. A 8 (2020) 207-217.
DOI URL |
[20] |
S.B. Wang, Y. Wang, S.L. Zhang, S.Q. Zang, X.W.D. Lou, Adv. Mater. 31 (2019) 1903404.
DOI URL |
[21] |
Y. Xia, Q. Li, K.L. Lv, M. Li, Appl. Surf. Sci. 398 (2017) 81-88.
DOI URL |
[22] |
B. Chai, C. Liu, C.L. Wang, J.T. Yan, Z.D. Ren, Chin. J. Catal. 38 (2017) 2067-2075.
DOI URL |
[23] |
H.Q. An, Z.T. Lv, K. Zhang, C.Y. Deng, H. Wang, Z.W. Xu, M.R. Wang, Z. Yin, Appl. Surf. Sci. 536 (2021) 147934.
DOI URL |
[24] |
Y. Xia, Q. Li, K.L. Lv, D.G. Tang, M. Li, Appl. Catal. B-Environ. 206 (2017) 344-352.
DOI URL |
[25] |
S.M. Mao, J.W. Shi, G.T. Sun, D.D. Ma, C. He, Z.X. Pu, K.L. Song, Y.H. Cheng, Appl. Catal. B-Environ. 282 (2021) 119550.
DOI URL |
[26] |
H.Q. An, M. Li, R.D. Liu, Z.R. Gao, Z. Yin, Chem. Eng. J. 382 (2020) 122953.
DOI URL |
[27] |
M.T. Cao, F.L. Yang, Q. Zhang, J.H. Zhang, L. Zhang, L.F. Li, X.H. Wang, W.L. Dai, J. Mater. Sci. Technol. 76 (2021) 189-199.
DOI URL |
[28] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[29] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992-1005.
DOI URL |
[30] |
X.X. Zhan, C. Si, J. Zhou, Z.M. Sun, Nanoscale Horiz 5 (2020) 235-258.
DOI URL |
[31] | H.H. Shi, P.P. Zhang, Z.C. Liu, S.W. Park, M.R. Lohe, Y.P. Wu, A.S. Nia, S. Yang, X.L. Feng, Angew. Chem. Int. Ed. Engl. 60 (2021) 8689-8693. |
[32] |
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto, Y. Pivak, J.T. Van Omme, S.J. May, Y. Gogotsi, M.L. Taheri, Nat. Commun. 10 (2019) 522.
DOI URL |
[33] |
V. Kamysbayev, A.S. Filatov, H.C. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D.V. Talapin, Science 369 (2020) 979-983.
DOI URL PMID |
[34] |
F. Han, S.J. Luo, L.Y. Xie, J.J. Zhu, W. Wei, X. Chen, F.W. Liu, W. Chen, J.L. Zhao, L. Dong, K. Yu, X.R. Zeng, F. Rao, L. Wang, Y. Huang, ACS Appl. Mater. Interfaces 11 (2019) 8443-8452.
DOI URL |
[35] | C. Yang, Q.Y. Tan, Q. Li, J. Zhou, J.J. Fan, B. Li, J. Sun, K.L. Lv, Appl. Catal. B-Env- iron. 268 (2020) 118738. |
[36] |
J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, S.Z. Qiao, Nat. Commun. 8 (2017) 13907.
DOI URL |
[37] | Z.M. Jiang, Q. Chen, Q.Q. Zheng, R.C. Shen, P. Zhang, X. Li, Acta Phys.-Chim. Sin. 37 (2021) 2010059. |
[38] |
K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 42 (2021) 3-14.
DOI URL |
[39] |
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. Rummeli, Chem. Soc. Rev. 48 (2019) 72-133.
DOI URL |
[40] |
H.T. Xu, R. Xiao, J.R. Huang, Y. Jiang, C.X. Zhao, X.F. Yang, Chin. J. Catal. 42 (2021) 107-114.
DOI URL |
[41] |
P.Y. Kuang, J.X. Low, B. Cheng, J.G. Yu, J.J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[42] | G.C. Zuo, Y.T. Wang, W.L. Teo, A.M. Xie, Y. Guo, Y.X. Dai, W.Q. Zhou, D. Jana, Q.M. Xian, W. Dong, Y.L. Zhao, Angew. Chem. Int. Ed. Engl. 59 (2020) 11287-11292. |
[43] | S.J. Li, L.H. Shao, Z.F. Yang, S. Cheng, C. Yang, Y.T. Liu, X.N. Xia, Green Energy Environ 7 (2022) 246-256. |
[44] |
T.T. Ren, H.S. Huang, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J.M. Lu, J. Colloid. Interface. Sci. 598 (2021) 398-408.
DOI URL |
[45] |
Z. Liang, R. Shen, Y. Ng, P. Zhang, Q. Xiang, X. Li, J. Mater. Sci. Technol. 56 (2020) 89-121.
DOI URL |
[46] |
W. Wu, J. Xu, X.W. Tang, P.W. Xie, X.H. Liu, J.S. Xu, H. Zhou, D. Zhang, T.X. Fan, Chem. Mater. 30 (2018) 5932-5940.
DOI URL |
[47] |
Y.J. Li, Y.Y. Liu, D.N. Xing, J.J. Wang, L.R. Zheng, Z.Y. Wang, P. Wang, Z.K. Zheng, H.F. Cheng, Y. Dai, B.B. Huang, Appl. Catal. B-Environ. 285 (2021) 119855.
DOI URL |
[48] |
C. Yang, S.S. Zhang, Y. Huang, K.L. Lv, S. Fang, X.F. Wu, Q. Li, J.J. Fan, Appl. Surf. Sci. 505 (2020) 144654.
DOI URL |
[49] |
Y.J. Li, Z.H. Yin, G.R. Ji, Z.Q. Liang, Y.J. Xue, Y.C. Guo, J. Tian, X.Z. Wang, H.Z. Cui, Appl. Catal. B-Environ. 246 (2019) 12-20.
DOI URL |
[50] |
J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, J. Catal. 361 (2018) 255-266.
DOI URL |
[51] | B. Wang, M.Y. Wang, F.Y. Liu, Q. Zhang, S. Yao, X.L. Liu, F. Huang, Angew. Chem. Int. Ed. Engl. 59 (2020) 1914-1918. |
[52] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[53] |
Y. Xia, B. Cheng, J.J. Fan, J.G. Yu, G. Liu, Sci. China Mater. 63 (2020) 552-565.
DOI URL |
[54] |
D. Gao, R. Yuan, J. Fan, X. Hong, H. Yu, J. Mater. Sci. Technol. 56 (2020) 122-132.
DOI URL |
[55] |
T.P. Nguyen, D.L.T. Nguyen, V.H. Nguyen, T.H. Le, Q.V. Ly, D.V.N. Vo, Q.V. Nguyen, H.S. Le, H.W. Jang, S.Y. Kim, Q.V. Le, Appl. Surf. Sci. 505 (2020) 144574.
DOI URL |
[56] |
Q. Li, Y. Xia, C. Yang, K.L. Lv, M. Lei, M. Li, Chem. Eng. J. 349 (2018) 287-296.
DOI URL |
[57] |
K.S.W. Sing, D.H. Everett, R.a.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603-619.
DOI URL |
[58] | S. Cao, L.Y. Piao, Angew. Chem. Int. Ed. Engl. 59 (2020) 18312-18320. |
[59] |
S.B. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018) 5037-5040.
DOI URL |
[60] | J. Bian, Z. Zhang, J. Feng, M. Thangamuthu, F. Yang, L. Sun, Z. Li, Y. Qu, D. Tang, Z. Lin, F. Bai, J. Tang, L. Jing, Angew. Chem. Int. Ed. Engl. 60 (2021) 20906-20914. |
[61] |
C.L. Tan, M.Y. Qi, Z.R. Tang, Y.J. Xu, Appl. Catal. B-Environ. 298 (2021) 120541.
DOI URL |
[62] |
M.Q. Yang, Y.J. Xu, W. Lu, K. Zeng, H. Zhu, Q.H. Xu, G.W. Ho, Nat Commun 8 (2017) 14224.
DOI URL |
[63] |
K. Zhu, J. Ou-Yang, Q. Zeng, S.G. Meng, W. Teng, Y.H. Song, S. Tang, Y.J. Cui, Chin. J. Catal. 41 (2020) 454-463.
DOI URL |
[64] |
J.Z. Zhang, N. Kong, D. Hegh, K.a.S. Usman, G.W. Guan, S. Qin, I. Jurewicz, W.R. Yang, J.M. Razal, ACS Appl. Mater. Interfaces 12 (2020) 34032-34040.
DOI URL |
[65] |
Y.L. Yang, D.N. Zhang, Q.J. Xiang, Nanoscale 11 (2019) 18797-18805.
DOI URL |
[66] |
J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15 (1966) 627-637.
DOI URL |
[67] |
C. Yang, Q. Li, Y. Xia, K.L. Lv, M. Li, Appl. Surf. Sci. 464 (2019) 388-395.
DOI URL |
[68] |
Z.P. Li, W.X. Huang, J.X. Liu, K.L. Lv, Q. Li, ACS Catal 11 (2021) 8510-8520.
DOI URL |
[1] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[2] | Yali Zhang, Yi Yan, Hua Qiu, Zhonglei Ma, Kunpeng Ruan, Junwei Gu. A mini-review of MXene porous films: Preparation, mechanism and application [J]. J. Mater. Sci. Technol., 2022, 103(0): 42-49. |
[3] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[4] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[5] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[6] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[7] | Mathias Aakyiir, Brayden Tanner, Pei Lay Yap, Hadi Rastin, Tran Thanh Tung, Dusan Losic, Qingshi Meng, Jun Ma. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors [J]. J. Mater. Sci. Technol., 2022, 117(0): 174-182. |
[8] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[9] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[10] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[11] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[12] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[13] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[14] | Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature [J]. J. Mater. Sci. Technol., 2022, 114(0): 233-239. |
[15] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||