J. Mater. Sci. Technol. ›› 2022, Vol. 103: 42-49.DOI: 10.1016/j.jmst.2021.08.001
• Invited Review • Previous Articles Next Articles
Yali Zhang, Yi Yan, Hua Qiu*(), Zhonglei Ma, Kunpeng Ruan, Junwei Gu*(
)
Received:
2021-07-11
Revised:
2021-08-11
Accepted:
2021-08-11
Published:
2022-03-20
Online:
2021-08-27
Contact:
Hua Qiu,Junwei Gu
About author:
gjw@nwpu.edu.cn, nwpugjw@163.com (J. Gu).Yali Zhang, Yi Yan, Hua Qiu, Zhonglei Ma, Kunpeng Ruan, Junwei Gu. A mini-review of MXene porous films: Preparation, mechanism and application[J]. J. Mater. Sci. Technol., 2022, 103: 42-49.
Fig. 2. MXene porous films for EMI shielding. Schematic illustration of the fabrication for hydrophobic and flexible MXene porous film (a); cross-sectional SEM images of the MXene film (b) and the MXene porous film (c); MXene porous films with different thicknesses (d); effects of the expansion ratio on the measured and calculated EMI SE of the MXene porous films (e); reprinted with permission from Ref. [42]. Copyright 2017, Wiley-VCH. Schematic diagram of the preparation process for rGO porous film, MXene dense film and MXene/rGO porous composite film (f); SEM images of the cross-sections of MXene/rGO porous composite film (g); SET of MXene/rGO porous composite films (h); reprinted with permission from Ref. [44]. Copyright 2021, Elsevier.
Fig. 3. MXene porous films for lithium/sodium ion batteries. Schematic showing the construction of hollow MXene spheres and MXene porous film (a); digital image showing the flexibility of MXene porous film (b); SEM of MXene/PMMA hybrid spheres (c); cross-sectional SEM images of MXene porous film (d); reprinted with permission from Ref. [51]. Copyright 2017, Wiley-VCH. Schematic illustration of the preparation process of the freestanding and flexible MXene porous film (e); SEM images (f, g) and digital photo (h) of MXene porous film; reprinted with permission from Ref. [52]. Copyright 2019, Wiley-VCH.
Fig. 4. MXene porous films for pseudocapacitors. Ion transport in horizontally stacked (a) and vertically aligned (b) MXene films. The blue lines indicate ion transport pathways; Illustration of the surfactant-enhanced lamellar structure of the MXLLC (c); illustration of the alignment method (d); POM image of the MXLLC with shear direction at 45° to the polarizer angle (e); top view of SEM image of the MXLLC (f). Reprinted with permission from Ref. [67]. Copyright 2018, Nature Publishing Group. Schematic illustration of the scheme design of porous MXene architecture (g); stacked MXene structure (h); ionic transport pathway in stacked MXene film (i); formation principle and photograph display of MXene/BC porous composite film (j); cross-section images of MXene/BC porous composite film (k, l); reprinted with permission from Ref. [68]. Copyright 2019, Wiley-VCH.
Fig. 5. MXene porous films for biomedical science. Schematic illustration for synergistic therapy on HCC cells as assisted by DOX-loaded MXene@mMSNs-RGD at the cell level (a); cumulative DOX release from DOX loaded MXene@mMSNs-RGD in phosphate-buffered saline (PBS) at different pH values (b); cumulative DOX release from DOX-loaded MXene@mMSNs-RGD in PBS as triggered by 808 nm NIR lasers at elevated power density (c); relative viabilities of SMMC-7721 cells after different treatments, including control (without any treatment), laser only, DOX only, D@P (D: DOX, P: MXene@mMSNs-PEG), D@P + laser, D@R (R: MXene@mMSNs-RGD) + laser, at varied concentrations and power densities (d); reprinted with permission from Ref. [80]. Copyright 2018, Wiley-VCH. The scheme of the synthetic procedure and stepwise surface PEGylation/targeting modification of CTAC@MXene-MSN (e); Schematic illustration of CTAC@MXene-MSN-PEG-RGD for enhanced chemotherapy and PTT against cancer cells (f); normalized weight loss reduction of MXene@MSN and CTAC@MXene-MSN (g); tumor-inhibition rate of isolated tumors from each group at day 15 post treatment (h). Reprinted with permission from Ref. [81]. Copyright 2018, ivyspring. Schematic illustration for in vitro synergistic therapy of AIPH@MXene@mSiO2 against 4T1 cells (i). Reprinted with permission from Ref. [82]. Copyright 2019, American Chemical Society.
[1] |
L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, J. Mater. Chem. A 8 (2020) 20030-20036.
DOI URL |
[2] | D. Cao, M. Ren, J. Xiong, L. Pan, Y. Wang, X. Ji, T. Qiu, J. Yang, C. Zhang, Elec-trochim. Acta 348 (2020) 136211. |
[3] |
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao, J. Yuan , Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[4] |
H. Liu, R. Fu, X. Su, B. Wu, H. Wang, Y. Xu, X. Liu, Compos. Commun. 23 (2021) 100593.
DOI URL |
[5] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[6] |
Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Adv. Mater. Interfaces 6 (2019) 1802040.
DOI URL |
[7] | S. Huang, L. Wang, Y.C. Li, C.B. Liang, J.L. Zhang, J. Appl. Polymer 138 (2021) e50649. |
[8] |
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Nano-Micro Lett. 11 (2019) 72.
DOI URL |
[9] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (2018) 4583-4593.
DOI URL |
[10] | F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Mater. Today Phys. 21 (2021) 100512. |
[11] |
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu, C. Li, Adv. Funct. Mater. 30 (2019) 1906996.
DOI URL |
[12] | D.H. Ho, Y.Y. Choi, S.B. Jo, M. J.-M., J.H. Cho, Adv. Mater. (2021) 2005846. |
[13] |
M.M. Hasan, M.M. Hossain, H.K. Chowdhury, J. Mater. Chem. A 9 (2021) 3231-3269.
DOI URL |
[14] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[15] |
F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry, D. Zhao, Nano Today 30 (2020) 100803.
DOI URL |
[16] |
L. Wang, Z.L. Ma, L.X. Chen, Y.L. Zhang, D.P. Cao, J.W. Gu, SusMat 1 (3) (2021) 413-431.
DOI URL |
[17] |
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, Y. Liu, Adv. Sci. 5 (2018) 1800750.
DOI URL |
[18] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
[19] |
Y. Fang, B. Yang, D. He, H. Li, K. Zhu, L. Wu, K. Ye, K. Cheng, J. Yan, G. Wang, D. Cao, Chin. Chem. Lett. 31 (2020) 1004-1008.
DOI URL |
[20] |
Y. Fang, Y. Zhang, K. Zhu, R. Lian, Y. Gao, J. Yin, K. Ye, K. Cheng, J. Yan, G. Wang, Y. Wei, D. Cao, ACS Nano 13 (2019) 14319-14328.
DOI URL |
[21] | Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He, A.J. Baeumner, O.S. Wolfbeis, Z.L. Wang, K.N. Salama, H.N. Alshareef, Small 15 (2019) e1901190. |
[22] | K. Li, X. Wang, S. Li, P. Urbankowski, J. Li, Y. Xu, Y. Gogotsi, Small 16 (2020) e1906851. |
[23] |
H. Gu, Y. Xing, P. Xiong, H. Tang, C. Li, S. Chen, R. Zeng, K. Han, G. Shi, ACS Appl. Nano Mater. 2 (2019) 6537-6545.
DOI URL |
[24] | J.S. Jang, H.J. Jung, S. Chong, D.H. Kim, J. Kim, S.O. Kim, I.D. Kim, Adv. Mater. 32 (2020) e2002723. |
[25] |
C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao, F. Zhao, Y. Ying, J. Ping, Nano Energy 66 (2019) 104121.
DOI URL |
[26] |
J. Kong, H. Yang, X. Guo, S. Yang, Z. Huang, X. Lu, Z. Bo, J. Yan, K. Cen, K.K. Os-trikov, ACS Energy Lett. 5 (2020) 2266-2274.
DOI URL |
[27] |
B. Zhou, Z. Li, Y. Li, X. Liu, J. Ma, Y. Feng, D. Zhang, C. He, C. Liu, C. Shen, Compos. Sci. Technol. 201 (2021) 108531.
DOI URL |
[28] |
Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, ACS Appl. Mater. Interfaces 12 (2020) 22088-22098.
DOI URL |
[29] |
C. Cui, C. Xiang, L. Geng, X. Lai, R. Guo, Y. Zhang, H. Xiao, J. Lan, S. Lin, S. Jiang, J. Alloy. Compd. 788 (2019) 1246-1255.
DOI |
[30] |
Y. Cui, K. Yang, J. Wang, T. Shah, Q. Zhang, B. Zhang, Carbon 172 (2021) 1-14.
DOI URL |
[31] |
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, ACS Nano 14 (2020) 16643-16653.
DOI URL |
[32] |
M.A.F. Shahzad, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[33] |
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, Z. Xie, Chem. Eng. J. 381 (2020) 122696.
DOI URL |
[34] |
Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong, J. Gu, Compos. Sci. Technol. 183 (2019) 107833.
DOI URL |
[35] |
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C.M. Koo, G. Friedman, Y. Gogotsi, ACS Nano 14 (2020) 5008-5016.
DOI URL |
[36] |
D. Hu, X. Huang, S. Li, P. Jiang, Compos. Sci. Technol. 188 (2020) 107995.
DOI URL |
[37] |
P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao, W. Lu, Y. Chen, X. Zhang, ACS Nano 14 (2020) 688-697.
DOI URL |
[38] |
X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Chem. Eng. J. 380 (2020) 122475.
DOI URL |
[39] |
P. Kumar, Adv. Mater. Interfaces 6 (2019) 1901454.
DOI URL |
[40] |
C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, ACS Appl. Mater. Interfaces 12 (2020) 26485-26495.
DOI URL |
[41] | K. Qian, Q. Zhou, H. Wu, J. Fang, M. Miao, Y. Yang, S. Cao, L. Shi, X. Feng, Com-pos. Part A-Appl. S. 141 (2021) 106229. |
[42] |
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (2017) 1702367.
DOI URL |
[43] |
Z. Fan, H. He, J. Yu, L. Liu, Y. Liu, Z. Xie, ACS Appl. Energy Mater. 3 (2020) 8171-8178.
DOI URL |
[44] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175 (2021) 271-280.
DOI URL |
[45] |
N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu, Y. Gogotsi, B. Xu, Adv. Funct. Mater. 29 (2019) 1906282.
DOI URL |
[46] |
J. Huang, R. Meng, L. Zu, Z. Wang, N. Feng, Z. Yang, Y. Yu, J. Yang, Nano Energy 46 (2018) 20-28.
DOI URL |
[47] |
J.-L. Xu, X. Zhang, Y.-X. Miao, M.-X. Wen, W.-J. Yan, P. Lu, Z.-R. Wang, Q. Sun, Appl. Surf. Sci. 546 (2021) 149163.
DOI URL |
[48] |
Y. Zhang, P. Wang, Y. Yin, X. Zhang, L. Fan, N. Zhang, K. Sun, Chem. Eng. J. 356 (2019) 1042-1051.
DOI |
[49] |
N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang, W. Cui, X. Wang, J. Mater. Sci. Technol. 67 (2021) 156-164.
DOI URL |
[50] |
X. Song, H. Wang, S. Jin, M. Lv, Y. Zhang, X. Kong, H. Xu, T. Ma, X. Luo, H. Tan, D. Hu, C. Deng, X. Chang, J. Xu, Nano Res. 13 (2020) 1659-1667.
DOI URL |
[51] |
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Adv. Mater. 29 (2017) 1702410.
DOI URL |
[52] | Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan, L. He, B. Xu, Small 15 (2019) e1904293. |
[53] |
C.E. Ren, M.-Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M.W. Barsoum, Y. Gogotsi, ChemElectroChem 3 (2016) 689-693.
DOI URL |
[54] |
Y. Ando, M. Okubo, A. Yamada, M. Otani, Adv. Funct. Mater. 30 (2020) 2000820.
DOI URL |
[55] |
H. Avireddy, B.W. Byles, D. Pinto, J.M. Delgado Galindo, J.J. Biendicho, X. Wang, C. Flox, O. Crosnier, T. Brousse, E. Pomerantseva, J.R. Morante, Y. Gogotsi, Nano Energy 64 (2019) 103961.
DOI URL |
[56] |
M. Boota, Y. Gogotsi, Adv. Energy Mater. 9 (2018) 1802917.
DOI URL |
[57] |
X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, ACS Nano 13 (2019) 9449-9456.
DOI URL |
[58] |
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 3 (2018) 1597-1603.
DOI URL |
[59] |
M. Hu, R. Cheng, Z. Li, T. Hu, H. Zhang, C. Shi, J. Yang, C. Cui, C. Zhang, H. Wang, B. Fan, X. Wang, Q.H. Yang, Nanoscale 12 (2020) 763-771.
DOI URL |
[60] | E. Kayali, A. VahidMohammadi, J. Orangi, M. Beidaghi, ACS Appl. Mater. Inter-faces 10 (2018) 25949-25954. |
[61] |
C. Zhan, W. Sun, P.R.C. Kent, M. Naguib, Y. Gogotsi, D. Jiang, J. Phys. Chem. C 123 (2018) 315-321.
DOI URL |
[62] |
L. Shao, J. Xu, J. Ma, B. Zhai, Y. Li, R. Xu, Z. Ma, G. Zhang, C. Wang, J. Qiu, Compos. Commun. 19 (2020) 108-113.
DOI URL |
[63] |
Z. Zhao, X. Wu, Adv. Mater. Interfaces 7 (2020) 2000831.
DOI URL |
[64] | X. Zhang, X. Liu, S. Dong, J. Yang, Y. Liu, Appl. Mater. Today 16 (2019) 315-321. |
[65] |
M. Yao, Y. Chen, Z. Wang, C. Shao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, Chem. Eng. J. 395 (2020) 124057.
DOI URL |
[66] |
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 2 (2017) 17105.
DOI URL |
[67] |
Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 557 (2018) 409-412.
DOI URL |
[68] |
Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, R. Liu, G. Yuan, Adv. Funct. Mater. 29 (2019) 1900326.
DOI URL |
[69] |
H. Cheng, Q. Liu, S. Han, S. Zhang, X. Ouyang, X. Wang, Z. Duan, H. Wei, X. Zhang, N. Ma, M. Xue, ACS Appl. Mater. Interfaces 12 (2020) 37637-37646.
DOI URL |
[70] |
J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Nat. Commun. 12 (2021) 1224.
DOI URL |
[71] |
T. Ozulumba, G. Ingavle, Y. Gogotsi, S. Sandeman, Biomater. Sci. 9 (2021) 1805-1815.
DOI URL |
[72] |
P. Pandey, A. Sengupta, S. Parmar, U. Bansode, S. Gosavi, A. Swarnkar, S. Muduli, A.D. Mohite, S. Ogale, ACS Appl. Nano Mater. 3 (2020) 3305-3314.
DOI URL |
[73] |
J. Yin, Q. Han, J. Zhang, Y. Liu, X. Gan, K. Xie, L. Xie, Y. Deng, ACS Appl. Mater. Interfaces 12 (2020) 45891-45903.
DOI URL |
[74] |
B. Zhang, Q. Gu, C. Wang, Q. Gao, J. Guo, P.W. Wong, C.T. Liu, A.K. An, ACS Appl. Mater. Interfaces 13 (2021) 3762-3770.
DOI URL |
[75] |
Y. Hu, H. Chu, D. Li, Y. Li, S. Zhao, L. Dong, D. Li, J. Mater. Sci. Technol. 81 (2021) 51-57.
DOI URL |
[76] |
W. Tang, Z. Dong, R. Zhang, X. Yi, K. Yang, M. Jin, C. Yuan, Z. Xiao, Z. Liu, L. Cheng, ACS Nano 13 (2019) 284-294.
DOI URL |
[77] |
Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, S. Wang, M. Chu, C. Zhang, J. Shen, Z. Huang, Y. Xiao, G.A. Ozin, X. Zhang, L. He, ACS Nano 15 (2021) 5696-5705.
DOI URL |
[78] |
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Nano-Micro Lett. 13 (2021) 150.
DOI PMID |
[79] | A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, Biomed. Eng. 20 (2021) 33. |
[80] | Z. Li, H. Zhang, J. Han, Y. Chen, H. Lin, T. Yang, Adv. Mater. 30 (2018) e1706981. |
[81] |
X. Han, X. Jing, D. Yang, H. Lin, Z. Wang, H. Ran, P. Li, Y. Chen, Theranostics 8 (2018) 4491-4508.
DOI URL |
[82] | H. Xiang, H. Lin, L. Yu, Y. Chen, ACS Nano 13 (2019) 2223-2235. |
[1] | Xiaoyi Wang, Yulong Liao, Dainan Zhang, Tianlong Wen, Zhiyong Zhong. A review of Fe3O4 thin films: Synthesis, modification and applications [J]. J. Mater. Sci. Technol., 2018, 34(8): 1259-1272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||