J. Mater. Sci. Technol. ›› 2022, Vol. 117: 174-182.DOI: 10.1016/j.jmst.2021.11.048
• Research Article • Previous Articles Next Articles
Mathias Aakyiira, Brayden Tannera, Pei Lay Yapb, Hadi Rastinc, Tran Thanh Tungb, Dusan Losicb, Qingshi Mengd, Jun Maa,*()
Received:
2021-08-15
Revised:
2021-10-30
Accepted:
2021-11-06
Published:
2022-02-17
Online:
2022-08-01
Contact:
Jun Ma
About author:
∗E-mail address: Jun.Ma@unisa.edu.au (J. Ma).Mathias Aakyiir, Brayden Tanner, Pei Lay Yap, Hadi Rastin, Tran Thanh Tung, Dusan Losic, Qingshi Meng, Jun Ma. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors[J]. J. Mater. Sci. Technol., 2022, 117: 174-182.
Fig. 2. (a) Schematic of step-by-step printing (PH means print head), (b) a photograph of a sliced file depicting the PDMS matrix (blue region) and the serpentine pattern of either un-MX or m-MX printed on the PDMS, (c) the pattern clearly printed on a glass slide as a trial and (d) a typical printed stretchable conductor. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
Description | un-MX | m-MX | PDMS |
---|---|---|---|
Applied pressure (kPa) | 33 | 33 | 53 |
Layer height (mm) | 0.2 | 0.2 | 0.2 |
Print speed (mm/s) | 6 | 6 | 6 |
Table 1. Optimised printing properties of inks.
Description | un-MX | m-MX | PDMS |
---|---|---|---|
Applied pressure (kPa) | 33 | 33 | 53 |
Layer height (mm) | 0.2 | 0.2 | 0.2 |
Print speed (mm/s) | 6 | 6 | 6 |
Fig. 3. (a) XRD patterns of un-MX and m-MX, (b) FTIR spectra showing prominent peaks of un-MX, m-MX, PDMS and the siloxane surfactant, (c) schematic of the printed stretchable conductor, and (d) thermal stability of un-MX and m-MX obtained by TGA in nitrogen.
Fig. 4. Rheological properties of the inks: (a) shear stress sweep test to determine yield stress, (b) shear rate sweep curves revealing shear-thinning behaviour, recoverability curves under (c) alternating applied strain and (d) shear rate, and (e, f) frequency sweep tests revealing solid-like feature.
Fig. 5. (a) A cross-sectional view of m-MXene ink (black region) encased in the elastomer matrix (white region), (b, c) magnified region of interconnected m-MXene nanosheets providing electrical conductivity for the construct, and (d) electrical conductivity.
Fig. 6. (a) Stress-strain graph of the stretchable conductor, (b-d) hysteresis curves at different strains and cycles, and (e, f) relative resistance change vs strain.
Cycle no. | Strain amplitude | ||
---|---|---|---|
5% | 10% | 20% | |
1 | 0.011 | 0.062 | 0.239 |
10 | 0.013 | 0.060 | 0.208 |
50 | 0.006 | 0.060 | 0.192 |
100 | 0.007 | 0.063 | 0.190 |
Standard deviation | 0.003 | 0.001 | 0.020 |
Table 2. Integrated areas of hysteresis curves at different strain amplitudes and cycles.
Cycle no. | Strain amplitude | ||
---|---|---|---|
5% | 10% | 20% | |
1 | 0.011 | 0.062 | 0.239 |
10 | 0.013 | 0.060 | 0.208 |
50 | 0.006 | 0.060 | 0.192 |
100 | 0.007 | 0.063 | 0.190 |
Standard deviation | 0.003 | 0.001 | 0.020 |
[1] |
S. Wu, S. Peng, Y. Yu, C.H. Wang, Adv. Mater. Technol. 5 (2020) 1900908.
DOI URL |
[2] |
A. Qiu, M. Aakyiir, R. Wang, Z. Yang, A. Umer, I. Lee, H.Y. Hsu, J. Ma, Mater. Adv. 1 (2020) 235-243.
DOI URL |
[3] |
A. Qiu, P. Li, Z. Yang, Y. Yao, I. Lee, J. Ma, Adv. Funct. Mater. 29 (2019) 1806306.
DOI URL |
[4] |
B. Li, J. Luo, X. Huang, L. Lin, L. Wang, M. Hu, L. Tang, H. Xue, J. Gao, Y.W. Mai, Compos. Part B Eng. 181 (2020) 107580.
DOI URL |
[5] |
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang, Z. Guo, X. Lai, L. Lin, R.K. Li, J. Gao, Chem. Eng. J. 406 (2021) 126898.
DOI URL |
[6] |
K. Tian, G. Sui, P. Yang, H. Deng, Q. Fu, ACS Appl. Mater. Interfaces 12 (2020) 20998-21008.
DOI URL |
[7] |
G. Shi, Z. Zhao, J.H. Pai, I. Lee, L. Zhang, C. Stevenson, K. Ishara, R. Zhang, H. Zhu, J. Ma, Adv. Funct. Mater. 26 (2016) 7614-7625.
DOI URL |
[8] |
Q. Shi, K. Tian, H. Zhu, Z.R. Li, L.G. Zhu, H. Deng, W. Huang, Q. Fu, ACS Appl. Mater. Interfaces 12 (2020) 9790-9796.
DOI URL |
[9] |
K. Tian, Q. Pan, H. Deng, Q. Fu, Compos. Part A Appl. Sci. Manuf. 130 (2020) 105757.
DOI URL |
[10] |
L. Wang, X. Huang, D. Wang, W. Zhang, S. Gao, J. Luo, Z. Guo, H. Xue, J. Gao, Chem. Eng. J. 405 (2021) 127025.
DOI URL |
[11] |
Y. Yang, G. Zhao, X. Cheng, H. Deng, Q. Fu, ACS Appl. Mater. Interfaces 13 (2021) 14599-14611.
DOI URL |
[12] |
X. Zhou, L. Zhu, L. Fan, H. Deng, Q. Fu, ACS Appl. Mater. Interfaces 10 (2018) 31655-31663.
DOI URL |
[13] |
K. Hassan, M.J. Nine, T.T. Tung, N. Stanley, P.L. Yap, H. Rastin, L. Yu, D. Losic, Nanoscale 12 (2020) 19007-19042.
DOI URL |
[14] |
A. Afshar, D. Mihut, J. Mater. Sci. Technol. 53 (2020) 185-191.
DOI |
[15] |
X. You, J. Yang, M. Wang, H. Wang, L. Gao, S. Dong, J. Mater. Sci. Technol. 58 (2020) 16-23.
DOI URL |
[16] |
X. Zhou, J. Deng, C. Fang, W. Lei, Y. Song, Z. Zhang, Z. Huang, Y. Li, J. Mater. Sci. Technol. 60 (2021) 27-34.
DOI URL |
[17] |
H. Rastin, B. Zhang, A. Mazinani, K. Hassan, J. Bi, T.T. Tung, D. Losic, Nanoscale 12 (2020) 16069.
DOI PMID |
[18] |
C.J. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A.S. Ascaso, S. Bar-wich, C.Ó. Coileáin, N. McEvoy, H.C. Nerl, Nat. Commun. 10 (2019) 1-9.
DOI URL |
[19] |
Z. Fan, C. Wei, L. Yu, Z. Xia, J. Cai, Z. Tian, G. Zou, S.X. Dou, J. Sun, ACS Nano 14 (2020) 867-876.
DOI URL |
[20] |
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang, J. Coelho, S. Pinilla, Y. Zhang, F. Qi, V. Nicolosi, Adv. Funct. Mater. 30 (2020) 2000842.
DOI URL |
[21] |
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, ACS Nano 14 (2019) 640-650.
DOI URL |
[22] |
E. Redondo, M. Pumera, Electrochem. Commun. 124 (2021) 106920.
DOI URL |
[23] |
W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A. Dryfe, S. Barg, Adv. Mater. 31 (2019) 1902725.
DOI URL |
[24] |
Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim, H.N. Alshareef, Adv. Mater. 32 (2020) 1908486.
DOI URL |
[25] |
S. Ding, J. Ying, F. Chen, L. Fu, Y. Lv, S. Zhao, G. Ji, J. Nanoparticle Res. 23 (2021) 1-6.
DOI URL |
[26] |
G. Ye, Z. Song, T. Yu, Q. Tan, Y. Zhang, T. Chen, C. He, L. Jin, N. Liu, ACS Appl. Mater. Interfaces 12 (2019) 1486-1494.
DOI URL |
[27] |
G. Shi, S. Araby, C.T. Gibson, Q. Meng, S. Zhu, J. Ma, Adv. Funct. Mater. 28 (2018) 1706705.
DOI URL |
[28] |
Q. Meng, J. Jin, R. Wang, H.C. Kuan, J. Ma, N. Kawashima, A. Michelmore, S. Zhu, C.H. Wang, Nanotechnology 25 (2014) 125707.
DOI URL |
[29] |
I. Zaman, H.C. Kuan, Q. Meng, A. Michelmore, N. Kawashima, T. Pitt, L. Zhang, S. Gouda, L. Luong, J. Ma, Adv. Funct. Mater. 22 (2012) 2735-2743.
DOI URL |
[30] |
Q. Meng, H. Wu, Z. Zhao, S. Araby, S. Lu, J. Ma, Compos. Part A Appl. Sci. Manuf. 92 (2017) 42-50.
DOI URL |
[31] |
S. Araby, Q. Meng, L. Zhang, I. Zaman, P. Majewski, J. Ma, Nanotechnology 26 (2015) 112001.
DOI URL |
[32] |
S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H.-C. Kuan, P. Ma-jewski, J. Ma, L. Zhang, Nanotechnology 24 (2013) 165601.
DOI URL |
[33] | X. Huang, T. Leng, K.H. Chang, J.C. Chen, K.S. Novoselov, Z. Hu, 2D Mater. 3 (2016) 025021. |
[34] |
F. Miao, S. Majee, M. Song, J. Zhao, S.L. Zhang, Z.B. Zhang, Synthet. Met. 220 (2016) 318-322.
DOI URL |
[35] |
J.J. Moyano, A. Gómez-Gómez, D. Pérez-Coll, M. Belmonte, P. Miranzo, M.I. Os-endi, Carbon 151 (2019) 94-102.
DOI |
[36] |
A. Cortés, A. Jiménez-Suárez, M. Campo, A. Ureña, S. Prolongo, Eur. Polym. J. 141 (2020) 110090.
DOI URL |
[37] |
S. Majee, D. Banerjee, X. Liu, S.L. Zhang, Z.B. Zhang, Carbon 117 (2017) 240-245.
DOI URL |
[38] | W. Wu, H.Y. Liu, Y. Kang, T. Zhang, S. Jiang, B. Li, J. Yin, J. Zhu, Mater. Technol. (2020) 1-10. |
[39] |
M. Aakyiir, M.A.S. Kingu, S. Araby, Q. Meng, J. Shao, Y. Amer, J. Ma, J. Appl. Polym. Sci. 138 (2021) 50509.
DOI URL |
[40] |
M. Aakyiir, S. Araby, A. Michelmore, Q. Meng, Y. Amer, Y. Yao, M. Li, X. Wu, L. Zhang, J. Ma, Nanotechnology 31 (2020) 315715.
DOI URL |
[41] |
M. Aakyiir, H. Yu, S. Araby, W. Ruoyu, A. Michelmore, Q. Meng, D. Losic, N.R. Choudhury, J. Ma, Chem. Eng. J. 397 (2020) 125439.
DOI URL |
[42] |
J. Ma, Z.Z. Yu, H.C. Kuan, A. Dasari, Y.W. Mai, Macromol. Rapid Commun. 26 (2005) 830-833.
DOI URL |
[43] | S. Salih, J. Oleiwi, H. Ali, in: Proceedings of the International Conference on Materials Engneering and Science, Istabul, Turkey, 2018 August 8. |
[44] |
H. Tang, S. Zhuang, Z. Bao, C. Lao, Y. Mei, ChemElectroChem 3 (2016) 871-876.
DOI URL |
[45] | M. Shekhirev, C.E. Shuck, A. Sarycheva, Y. Gogotsi, Prog. Mater. Sci. (2020) 100757. |
[46] |
Z. Liu, B. Bhandari, S. Prakash, S. Mantihal, M. Zhang, Food Hydrocoll. 87 (2019) 413-424.
DOI URL |
[47] |
A. M’barki, L. Bocquet, A. Stevenson, Sci. Rep. 7 (2017) 1-10.
DOI URL |
[48] |
J. Roman, W. Neri, V. Fierro, A. Celzard, A. Bentaleb, I. Ly, J. Zhong, A. Derré, P. Poulin, Nano Today 33 (2020) 100881.
DOI URL |
[49] | H. Li, S. Liu, L. Lin, Int. J. Bioprinting 2 (2016) 54-66. |
[50] |
J. Ma, Q. Meng, A. Michelmore, N. Kawashima, Z. Izzuddin, C. Bengtsson, H.C. Kuan, J. Mater. Chem. A 1 (2013) 4255-4264.
DOI URL |
[1] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[2] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[3] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[4] | Guo-Xiang Zhou, Zhe Zhao, Yan-zhao Zhang, Wen-jin Liu, Zhi-Hua Yang, De-Chang Jia, Yu Zhou. Printing and electromagnetic characteristics of 3D printing frequency selective surface using graphene [J]. J. Mater. Sci. Technol., 2022, 111(0): 49-56. |
[5] | Tingting Tang, Shanchi Wang, Yue Jiang, Zhiguang Xu, Yu Chen, Tianshu Peng, Fawad Khan, Jiabing Feng, Pingan Song, Yan Zhao. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 66-75. |
[6] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[7] | Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature [J]. J. Mater. Sci. Technol., 2022, 114(0): 233-239. |
[8] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[9] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[10] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[11] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[12] | Qianqian Huang, Gehuan Wang, Ming Zhou, Jing Zheng, Shaolong Tang, Guangbin Ji. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture [J]. J. Mater. Sci. Technol., 2022, 108(0): 90-101. |
[13] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[14] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
[15] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||