J. Mater. Sci. Technol. ›› 2022, Vol. 111: 66-75.DOI: 10.1016/j.jmst.2021.08.091
• Research Article • Previous Articles Next Articles
Tingting Tanga,1, Shanchi Wanga,1, Yue Jiangb,*(), Zhiguang Xub, Yu Chenc, Tianshu Penga, Fawad Khana, Jiabing Fengd, Pingan Songd,*(
), Yan Zhaoa,*(
)
Received:
2021-07-21
Revised:
2021-08-29
Accepted:
2021-08-30
Published:
2022-06-10
Online:
2021-12-01
Contact:
Yue Jiang,Pingan Song,Yan Zhao
About author:
yanzhao@suda.edu.cn (Y. Zhao).1These authors contributed equally to this work.
Tingting Tang, Shanchi Wang, Yue Jiang, Zhiguang Xu, Yu Chen, Tianshu Peng, Fawad Khan, Jiabing Feng, Pingan Song, Yan Zhao. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding[J]. J. Mater. Sci. Technol., 2022, 111: 66-75.
Fig. 1. (a) Schematic illustration of the synthesis process of phosphorylated MXene and corresponding morphologies of Ti3AlC2, Ti3C2Tx MXene, exfoliated MXene and phosphorylated MXene. (b) Color Changes of pristine MXene and phosphorylated MXene suspensions over days. (c) Schematic illustration of the fabrication process of flexible phosphorylated MXene/PP composite sheets.
Fig. 2. SEM images of the (a-c) surface and (d-f) cross-section of the phosphorylated MXene/PP composites: (a, d) MP-5, (b, e) MP-15, and (c, f) MP-35. (g) EDS mapping of the cross-section of MP-35.
Fig. 3. (a) XRD patterns of pristine MXene, phosphorylated MXene and PEI cross-linked MXene. (b) FT-IR spectra of SHMB, pristine MXene, phosphorylated MXene and PEI cross-linked MXene. (c) XPS spectra of pristine MXene, phosphorylated MXene and PEI cross-linked MXene. (d) P2p, (e) N1s and (f) O1s high-resolution XPS spectra of phosphorylated MXene and PEI cross-linked MXene.
Fig. 4. (a) Stress-strain curves of MXene/PP composites. Stress-strain hysteresis loops at 1st, 2nd, 10th and 100th cycles during cyclic tension for (b) MP-5, (c) MP-15, and (d) MP-35, respectively.
Fig. 5. (a) TGA curves of pristine MXene, phosphorylated MXene, PEI cross-linked MXene and PP nonwoven fabric. (b) Heat release rate curves of PP nonwoven fabric and MXene/PP composites. Burning process of (c) pure PP and (d) MP-35. (e) Digital image of vertical flame testing of (1) pure PP and (2) MP-35, and the SEM image of MP-35 after burning. (f) XRD pattern of char residues from MP-35 after burning.
Sample | MCC | LOI | VFT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
HRC (J/gK) | PHRR (W/g) | THR (kJ/g) | TPHRR ( °C) | Empty Cell | (vol.%) | Empty Cell | Char length (cm) | After-flame (s) | After-glow (s) | |
PP nonwoven fabric | 403 | 409.1 | 17.3 | 449.4 | 18 | - | 27.3 | - | ||
MP-C1 | 313 | 317.6 | 12.6 | 429.3 | 20 | - | 17.1 | 0 | ||
MP-5 | 253 | 247.7 | 12.8 | 428.9 | 25 | 19.0 | 5.2 | 0 | ||
MP-35 | 51 | 50.0 | 3.7 | 399.9 | 30 | 2.9 | 0 | 0 |
Table 1. MCC, LOI and VFT test results of PP and its MXene/PP composites.
Sample | MCC | LOI | VFT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
HRC (J/gK) | PHRR (W/g) | THR (kJ/g) | TPHRR ( °C) | Empty Cell | (vol.%) | Empty Cell | Char length (cm) | After-flame (s) | After-glow (s) | |
PP nonwoven fabric | 403 | 409.1 | 17.3 | 449.4 | 18 | - | 27.3 | - | ||
MP-C1 | 313 | 317.6 | 12.6 | 429.3 | 20 | - | 17.1 | 0 | ||
MP-5 | 253 | 247.7 | 12.8 | 428.9 | 25 | 19.0 | 5.2 | 0 | ||
MP-35 | 51 | 50.0 | 3.7 | 399.9 | 30 | 2.9 | 0 | 0 |
Fig. 6. (a) Electrical conductivities, (b) EMI SE, and (c) SER, SEA and SET of MXene/PP composites. (d) Power of reflectivity, absorptivity and transmissivity of MXene/PP composites. (e) Comparison of the specific EMI shielding effectiveness of as-prepared MP-35 with previously reported conductive composites counterparts. The detailed data and references are listed in Table S1 in supporting information. (f) Schematic illustration of EMI shielding mechanism for phosphorylated MXene/PP composites.
[1] | T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv.Mater. 32 (2020) 1906769. |
[2] |
X.M. Liu, N. Chai, Z.J. Yu, H.L. Xu, X.L. Li, J.Q. Liu, X.W. Yin, R. Riedel, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[3] | Z. Ma, J. Li, J. Zhang, A. He, Y. Dong, G. Tan, M. Ning, Q. Man, X. Liu, J. Mater. Sci.Technol. 81 (2021) 43-50. |
[4] |
C.L. Russell, Environ. Res. 165 (2018) 484-495.
DOI PMID |
[5] |
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu, J. Gu, Nano-Micro Lett. 13 (2021) 181.
DOI URL |
[6] |
W.T. He, P.A. Song, B. Yu, Z.P. Fang, H. Wang, Prog. Mater. Sci. 114 (2020) 100687.
DOI URL |
[7] |
S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Nat. Rev. Mater. 5 (2020) 259-275.
DOI URL |
[8] |
Y. Zhang, J. Jing, T. Liu, L.D. Xi, T. Sai, S.Y. Ran, Z.P. Fang, S.Q. Huo, P.A. Song, Chem. Eng. J. 411 (2021) 128493.
DOI URL |
[9] |
G.B. Huang, W. Chen, T. Wu, H.C. Guo, C.Y. Fu, Y.J. Xue, K. Wang, P.A. Song, Chem. Eng. J. 410 (2021) 127590.
DOI URL |
[10] | Y.L. Li, G.H. Wu, A.T. Chen, W.C. Liu, Y.X. Wang, L. Zhang, J. Mater. Sci.Technol. 33 (2017) 558-566. |
[11] |
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen, S.Y. Guo, Carbon NY 177 (2021) 377-402.
DOI URL |
[12] |
Y. Wang, Y.N. Gao, T.N. Yue, X.D. Chen, M. Wang, Appl. Surf. Sci. 563 (2021) 150255.
DOI URL |
[13] |
J.H. Cai, J. Li, X.D. Chen, M. Wang, Chem. Eng. J. 393 (2020) 124805.
DOI URL |
[14] | J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Compos. Par. A Appl. Sci. Manuf. 140 (2021) 106188. |
[15] | L.Y. Han, Q. Song, K.Z. Li, X.M. Yin, J.J. Sun, H.J. Li, F.P. Zhang, X.R. Ren, X. Wang, J. Mater. Sci.Technol. 72 (2021) 154-161. |
[16] |
Y. Shi, L. He, D. Chen, Q. Wang, J. Shen, S. Guo, Compos. Part A Appl. Sci. Manuf. 137 (2020) 106037.
DOI URL |
[17] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett. 13 (2021) 91.
DOI URL |
[18] | S. Hou, W. Ma, G. Li, Y. Zhang, Y. Ji, F. Fan, Y. Huang, J. Mater. Sci.Technol. 52 (2020) 136-144. |
[19] |
S. Liu, S. Qin, Y. Jiang, P. Song, H. Wang, Compos. Part A Appl. Sci. Manuf. 145 (2021) 106376.
DOI URL |
[20] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[21] |
Y. Chen, J. Li, T. Li, L. Zhang, F. Meng, Carbon NY 180 (2021) 163-184.
DOI URL |
[22] |
X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu, Y. Zhang, Y. Dai, R. Yang, Z.Z. Yu, Chem. Eng. J. 381 (2020) 122622.
DOI URL |
[23] |
L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu, H. Qiu, Y.L. Zhang, J. Kong, J.W. Gu, Compos. Part B Eng. 171 (2019) 111-118.
DOI URL |
[24] |
M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang, W.Q. Jiang, X.L. Gong, S.H. Xuan, Compos. Part B Eng. 211 (2021) 108669.
DOI URL |
[25] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[26] |
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 14 (2020) 8368-8382.
DOI URL |
[27] |
Y. Zhang, K. Ruan, J. Gu, Small (2021), doi: 10.1002/smll.202101951.
DOI |
[28] |
W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang, Adv. Funct. Mater. 30 (2020) 2005223.
DOI URL |
[29] |
Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu, P.A. Song, Chem. Eng. J. 399 (2020) 125829.
DOI URL |
[30] |
N.N. Zhao, F.C. Zhang, F. Zhan, D. Yi, Y.J. Yang, W.B. Cui, X. Wang, J. Mater. Sci. Technol. 67 (2021) 156-164.
DOI URL |
[31] |
R. Liu, W. Li, ACS Omega 3 (2018) 2609-2617.
DOI URL |
[32] |
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902-907.
DOI URL |
[33] |
S. Berber, Y.K. Kwon, D. Tománek, Phys. Rev. Lett. 84 (2000) 4613-4616.
PMID |
[34] |
T. Habib, X.F. Zhao, S.A. Shah, Y.X. Chen, W.M. Sun, H. An, J.L. Lutkenhaus, M. Radovic, M.J. Green, npj 2D Mater. Appl. 3 (2019) 8.
DOI URL |
[35] | C.J. Zhang, S. Pinilla, N. McEyoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Chem. Mater. 29 (2017) 484 8-4856. |
[36] |
S. Huang, V.N. Mochalin, Inorg. Chem. 58 (2019) 1958-1966.
DOI URL |
[37] |
V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri, M.W. Barsoum, Angew. Chem. Int. Ed. 58 (2019) 12655-12660.
DOI URL |
[38] |
X.F. Zhao, A. Vashisth, E. Prehn, W.M. Sun, S. Shah, T. Habib, Y.X. Chen, Z.Y. Tan, J. Lutkenhaus, M. Radovic, M.J. Green, Matter 1 (2019) 513-526.
DOI URL |
[39] | C.W. Wu, B. Unnikrishnan, I.W.P. Chen, S.G. Harroun, H.T. Chang, C.C. Huang, Energy Storage Mater. 25 (2020) 563-571. |
[40] |
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
DOI URL |
[41] |
X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Chem. Eng. J. 380 (2020) 122475.
DOI URL |
[42] |
W. Ren, Y. Yang, J. Yang, H. Duan, G. Zhao, Y. Liu, Chem. Eng. J. 415 (2021) 129052.
DOI URL |
[43] |
H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, ACS Appl. Mater. Interfaces 13 (2021) 26505-26514.
DOI URL |
[44] |
H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim, C.W. Ahn, Y. Gogotsi, H.T. Jung, ACS Sens. 4 (2019) 1365-1372.
DOI URL |
[45] |
A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas, M. Guerioune, J. Eur. Ceram. Soc. 30 (2010) 1049-1057.
DOI URL |
[46] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[47] |
Y. Xue, J. Feng, S. Huo, P.A. Song, B. Yu, L. Liu, H. Wang, Chem. Eng. J. 397 (2020) 125336.
DOI URL |
[48] |
A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mah-moud, D.S. Lee, Chem. Eng. J. 349 (2018) 748-755.
DOI URL |
[49] |
T. Xia, Y. Guan, M. Yang, W. Xiong, N. Wang, S. Zhao, C. Guo, Colloids Surf. A 443 (2014) 552-559.
DOI URL |
[50] |
Y. Jiang, X. Xie, Y. Chen, Y. Liu, R. Yang, G. Sui, J. Mater. Chem. C 6 (2018) 8679-8687.
DOI URL |
[51] |
L. Vanzetti, L. Pasquardini, C. Potrich, V. Vaghi, E. Battista, F. Causa, C. Peder-zolli, Surf. Interface Anal. 48 (2016) 611-615.
DOI URL |
[52] |
P. Louette, F. Bodino, J.J. Pireaux, Surf. Sci. Spectra 12 (2005) 54-58.
DOI URL |
[53] |
Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu, C. Maluk, G. Huang, H. Wang, P.A. Song, ACS Nano 15 (2021) 11667-11680.
DOI URL |
[54] |
Y. Jin, G. Huang, D. Han, P.A. Song, W. Tang, J. Bao, R. Li, Y. Liu, Compos. Part A Appl. Sci. Manuf. 86 (2016) 9-18.
DOI URL |
[55] |
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong, J.W. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[56] |
J.W. Gu, C.B. Liang, X.M. Zhao, B. Gan, H. Qiu, Y.Q. Guo, X.T. Yang, Q.Y. Zhang, D.Y. Wang, Compos. Sci. Technol. 139 (2017) 83-89.
DOI URL |
[57] |
H.W. Huang, D.X. Dong, W.J. Li, X.Y. Zhang, L. Zhang, Y. Chen, X.X. Sheng, X. Lu, Chin. J. Chem. Eng. 28 (2020) 1981-1993.
DOI URL |
[58] |
S. Huang, L. Wang, Y.C. Li, C.B. Liang, J.L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649.
DOI URL |
[59] |
B. Yu, A.C.Y. Yuen, X. Xu, Z.C. Zhang, W. Yang, H. Lu, B. Fei, G.H. Yeoh, P.A. Song, H. Wang, J. Hazard. Mater. 401 (2021) 123342.
DOI URL |
[60] |
L. Liu, M. Zhu, Y. Shi, X. Xu, Z. Ma, B. Yu, S. Fu, G. Huang, H. Wang, P.A. Song, Chem. Eng. J. 424 (2021) 130338.
DOI URL |
[61] |
F. Khan, S. Wang, Z. Ma, A. Ahmed, P.A. Song, Z. Xu, R. Liu, H. Chi, J. Gu, L.C. Tang, Y. Zhao, Small Methods 5 (2021) 2001040.
DOI URL |
[62] |
O. Koklukaya, F. Carosio, L. Wagberg, Cellulose 25 (2018) 2691-2709.
DOI URL |
[63] |
Z. Zheng, S. Liu, B. Wang, T. Yang, X. Cui, H. Wang, Polym. Compos. 36 (2015) 1606-1619.
DOI URL |
[64] | A.B. Morgan, Poly. Rev. 59 (2019) 25-54. |
[65] |
J. Gu, J. Dang, Y. Wu, C. Xie, Y. Han, Polym. Plast. Tech. Eng. 51 (2012) 1198-1203.
DOI URL |
[66] |
Y. Chae, S.J. Kim, S.Y. Cho, J. Choi, K. Maleski, B.J. Lee, H.T. Jung, Y. Gogotsi, Y. Lee, C.W. Ahn, Nanoscale 11 (2019) 8387-8393.
DOI URL |
[67] |
A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan, G. Zhao, Y. Liu, Z.M. Li, Compos. Part A Appl. Sci. Manuf. 129 (2020) 105692.
DOI URL |
[68] |
D.D.L. Chung, Carbon NY 39 (2001) 279-285.
DOI URL |
[69] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat (2021), doi: 10.1002/sus2.21.
DOI |
[1] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[2] | Yali Zhang, Yi Yan, Hua Qiu, Zhonglei Ma, Kunpeng Ruan, Junwei Gu. A mini-review of MXene porous films: Preparation, mechanism and application [J]. J. Mater. Sci. Technol., 2022, 103(0): 42-49. |
[3] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[4] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[5] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[6] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[7] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[8] | A. Chithra, Praveen Wilson, Sujith Vijayan, R. Rajeev, K. Prabhakaran. Thermally insulating robust carbon composite foams with high EMI shielding from natural cotton [J]. J. Mater. Sci. Technol., 2021, 94(0): 113-122. |
[9] | Yulong Wu, Liang Wu, Mikhail L. Zheludkevich, Yanning Chen, Maria Serdechnova, Wenhui Yao, Carsten Blawert, Andrej Atrens, Fusheng Pan. MgAl-V2O74- LDHs/(PEI/MXene)10 composite film for magnesium alloy corrosion protection [J]. J. Mater. Sci. Technol., 2021, 91(0): 28-39. |
[10] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[11] | Lin Zhao, Zhao Wang, Yan Li, Sen Wang, Lifeng Wang, Zhaojun Qi, Qiang Ge, Xiaoguang Liu, JinZhong Zhang. Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties [J]. J. Mater. Sci. Technol., 2021, 78(0): 30-37. |
[12] | Yutao Hu, Hongwei Chu, Daozhi Li, Ying Li, Shengzhi Zhao, Li Dong, Dechun Li. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region [J]. J. Mater. Sci. Technol., 2021, 81(0): 51-57. |
[13] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[14] | Zhang Hui, Hu Tao, Wang Xiaohui, Zhou Yanchun. Structural defects in MAX phases and their derivative MXenes: A look forward [J]. J. Mater. Sci. Technol., 2020, 38(0): 205-220. |
[15] | Renfei Cheng, Tao Hu, Minmin Hu, Changji Li, Yan Liang, Zuohua Wang, Hui Zhang, Muchan Li, Hailong Wang, Hongxia Lu, Yunyi Fu, Hongwang Zhang, Quan-Hong Yang, Xiaohui Wang. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS) [J]. J. Mater. Sci. Technol., 2020, 40(0): 119-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||