J. Mater. Sci. Technol. ›› 2021, Vol. 94: 113-122.DOI: 10.1016/j.jmst.2021.02.064
• Research Article • Previous Articles Next Articles
A. Chithraa,b, Praveen Wilsona, Sujith Vijayana, R. Rajeevb, K. Prabhakarana,*(
)
Received:2020-12-07
Revised:2021-01-23
Accepted:2021-02-06
Published:2021-05-18
Online:2021-05-18
Contact:
K. Prabhakaran
About author:*E-mail address: kp2952002@gmail.com (K. Prabhakaran).A. Chithra, Praveen Wilson, Sujith Vijayan, R. Rajeev, K. Prabhakaran. Thermally insulating robust carbon composite foams with high EMI shielding from natural cotton[J]. J. Mater. Sci. Technol., 2021, 94: 113-122.
Fig. 2. Effect of sucrose solution concentration on the amount of sucrose retained in the filter pressed body, carbonization shrinkage and carbon composite foam density.
| ID/IG | |
|---|---|
| CCF-100 | 1.81 |
| CCF-4100 | 1.71 |
| CCF-700 | 1.58 |
| Carbonized cotton | 1.82 |
| Carbonized sucrose | 1.53 |
Table 1 ID/IG ratio of CCF samples, carbonized cotton and sucrose.
| ID/IG | |
|---|---|
| CCF-100 | 1.81 |
| CCF-4100 | 1.71 |
| CCF-700 | 1.58 |
| Carbonized cotton | 1.82 |
| Carbonized sucrose | 1.53 |
| BET surface area (m2 g -1) | Micropore area (m2 g -1) | Micropore volume (cm3 g -1) | Total pore volume (cm3 g -1) | |
|---|---|---|---|---|
| Cotton carbonized | 897 | 703 | 0.321 | 0.486 |
| Sucrose carbonized | 394 | 339 | 0.144 | 0.183 |
| CCF-100 | 773 | 644 | 0.232 | 0.36 |
| CCF-200 | 637 | 541 | 0.196 | 0.279 |
| CCF-300 | 583 | 497 | 0.180 | 0.245 |
| CCF-400 | 576 | 490 | 0.178 | 0.235 |
| CCF-500 | 574 | 481 | 0174 | 0263 |
| CCF-600 | 550 | 470 | 0.170 | 0.248 |
| CCF-700 | 503 | 420 | 0.151 | 0.226 |
Table 2 Textural properties of carbon composite foams.
| BET surface area (m2 g -1) | Micropore area (m2 g -1) | Micropore volume (cm3 g -1) | Total pore volume (cm3 g -1) | |
|---|---|---|---|---|
| Cotton carbonized | 897 | 703 | 0.321 | 0.486 |
| Sucrose carbonized | 394 | 339 | 0.144 | 0.183 |
| CCF-100 | 773 | 644 | 0.232 | 0.36 |
| CCF-200 | 637 | 541 | 0.196 | 0.279 |
| CCF-300 | 583 | 497 | 0.180 | 0.245 |
| CCF-400 | 576 | 490 | 0.178 | 0.235 |
| CCF-500 | 574 | 481 | 0174 | 0263 |
| CCF-600 | 550 | 470 | 0.170 | 0.248 |
| CCF-700 | 503 | 420 | 0.151 | 0.226 |
| Precursors | Thermal conductivity (W m-1K-1) | Density (g cm-3) | Refs. |
|---|---|---|---|
| Sawdust and Sucrose | 0.1-0.2 | 0.15-0.35 | [ |
| Phenolic resin and CNT | 0.07-0.05 | 0.06-0.1 | [ |
| Tannin | 0.3-0.4 | 0.05-0.07 | [ |
| Waste newspaper and sucrose | 0.1 | 0.18 | [ |
| Coke and mesocarbon microbeads | 0.24-0.26 (100 °C) | 0.38-0.45 | [ |
| SiO2 aerogel and pitch | 0.1-0.2 | 0.18-0.39 | [ |
| Coal tar pitch and montmorillonite clay | 0.25-2 | 0.67-0.727 | [ |
| Phenolic resole resin and K2Ti6O13 | 0.24-0.4 | 0.23-0.25 | [ |
| Phenolic resin and cenospheres | 0.02-0.21 | 0.3-0.45 | [ |
| Sucrose | 0.09-0.24 | 0.1-0.21 | [ |
| Wood | 0.7-5.4 | 0.49-0.59 | [ |
| Bismaleimide (BMI) resin and montmorillonite clay | 0.1-0.46 | 0.26-0.32 | [ |
Table 3 Thermal conductivity of reported amorphous carbon foams.
| Precursors | Thermal conductivity (W m-1K-1) | Density (g cm-3) | Refs. |
|---|---|---|---|
| Sawdust and Sucrose | 0.1-0.2 | 0.15-0.35 | [ |
| Phenolic resin and CNT | 0.07-0.05 | 0.06-0.1 | [ |
| Tannin | 0.3-0.4 | 0.05-0.07 | [ |
| Waste newspaper and sucrose | 0.1 | 0.18 | [ |
| Coke and mesocarbon microbeads | 0.24-0.26 (100 °C) | 0.38-0.45 | [ |
| SiO2 aerogel and pitch | 0.1-0.2 | 0.18-0.39 | [ |
| Coal tar pitch and montmorillonite clay | 0.25-2 | 0.67-0.727 | [ |
| Phenolic resole resin and K2Ti6O13 | 0.24-0.4 | 0.23-0.25 | [ |
| Phenolic resin and cenospheres | 0.02-0.21 | 0.3-0.45 | [ |
| Sucrose | 0.09-0.24 | 0.1-0.21 | [ |
| Wood | 0.7-5.4 | 0.49-0.59 | [ |
| Bismaleimide (BMI) resin and montmorillonite clay | 0.1-0.46 | 0.26-0.32 | [ |
| [1] |
M.D. Sarzynski, O.O. Ochoa, J. Compos. Mater. 39 (2005) 1067-1080.
DOI URL |
| [2] |
O. Mesalhy, K. Lafdi, A. Elgafy, Carbon N. Y. 44 (2006) 2080-2088.
DOI URL |
| [3] |
M. Albano, D. Micheli, G. Gradoni, R.B. Morles, M. Marchetti, F. Moglie, V. Mar-iani Primiani, Acta Astronaut 87 (2013) 30-39.
DOI URL |
| [4] |
M. Inagaki, J. Qiu, Q. Guo, Carbon N. Y. 87 (2015) 128-152.
DOI URL |
| [5] | A. Chithra, P. Wilson, S. Vijayan, R. Rajeev, K. Prabhakaran, Ind. Crops Prod. 145 (2020) 112076. |
| [6] |
L. Zhang, M. Liu, S. Roy, E.K. Chu, K.Y. See, X. Hu, ACS Appl. Mater. Interfaces 8 (2016) 7422-7430.
DOI URL |
| [7] | S. FARHAN, R. min WANG, K. zhi LI, Trans. Nonferrous Met. Soc. China (English Ed. 28 (2018) 103-113. |
| [8] |
Q. Li, L. Chen, J. Ding, J. Zhang, X. Li, K. Zheng, X. Zhang, X. Tian, Carbon N. Y. 104 (2016) 90-105.
DOI URL |
| [9] |
M. Letellier, S. Ghaffari Mosanenzadeh, H. Naguib, V. Fierro, A. Celzard, Carbon N. Y. 119 (2017) 241-250.
DOI URL |
| [10] |
G. Amaral-Labat, E. Gourdon, V. Fierro, A. Pizzi, A. Celzard, Carbon N. Y. 58 (2013) 76-86.
DOI URL |
| [11] | Z. Lou, W. Wang, C. Yuan, Y. Zhang, Y. Li, L. Yang, J. Bioresour. Bioprod. 4 (2019) 43-50. |
| [12] |
X. Xia, Y. Li, L. Long, P. Xiao, H. Luo, L. Pang, X. Xiao, W. Zhou, J. Eur. Ceram. Soc. 40 (2020) 3423-3430.
DOI URL |
| [13] |
M. Inagaki, T. Morishita, A. Kuno, T. Kito, M. Hirano, T. Suwa, K. Kusakawa, Carbon N. Y. 42 (2004) 497-502.
DOI URL |
| [14] | S.A. Song, Y. Lee, Y.S. Kim, S.S. Kim, Compos. Struct. 173 (2017) 1-8. |
| [15] |
Q. Gong, L. Zhan, Y. Zhang, Y. Wang, Carbon N. Y. 31 (2016) 445-450.
DOI URL |
| [16] |
P. Lorjai, S. Wongkasemjit, T. Chaisuwan, Mater. Sci. Eng. A 527 (2009) 77-84.
DOI URL |
| [17] |
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan, X. Wei, G. Zhang, Z. Ma, X. He, Carbon N. Y. 158 (2020) 45-54.
DOI URL |
| [18] |
M. Liu, L. Gan, F. Zhao, X. Fan, H. Xu, F. Wu, Z. Xu, Z. Hao, L. Chen, Carbon N. Y. 45 (2007) 3055-3057.
DOI URL |
| [19] | R.S. R. da Silva, S.S. Oishi, E.C. Botelho, N.G. Ferreira, Diam. Relat. Mater. 103 (2020) 107730. |
| [20] | S. Jiang, J.Y. Cheong, J.S. Nam, I.-.D. Kim, S. Agarwal, A. Greiner, ACS Appl. Mater. Interfaces 12 (2020) 19006-19014. |
| [21] | Q. Tang, L. Fang, W. Guo, J. Bioresour. Bioprod. 4 (2019) 51-59. |
| [22] |
G. Tondi, V. Fierro, A. Pizzi, A. Celzard, Carbon N. Y. 47 (2009) 1480-1492.
DOI URL |
| [23] |
J. Qu, Q. Han, F. Gao, J. Qiu, New Carbon Mater 32 (2017) 86-91.
DOI URL |
| [24] |
P. Jana, V. Fierro, A. Celzard, Ind. Crops Prod. 89 (2016) 498-506.
DOI URL |
| [25] |
X. Wu, L. Jiang, C. Long, Z. Fan, Nano Energy 13 (2015) 527-536.
DOI URL |
| [26] |
J. Seo, H. Park, K. Shin, S.H. Baeck, Y. Rhym, S.E. Shim, Carbon N. Y. 76 (2014) 357-367.
DOI URL |
| [27] |
X. Hong, Y. Liu, J. Fu, X. Wang, T. Zhang, S. Wang, F. Hou, J. Liang, Carbon N. Y. 170 (2020) 119-126.
DOI URL |
| [28] |
A. Chithra, P. Wilson, S. Vijayan, R. Rajeev, K. Prabhakaran, Mater. Des. 160 (2018) 65-73.
DOI URL |
| [29] | D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, H. Xiao, J. Bioresour. Bioprod. 5 (2020) 1-15. |
| [30] | W. Jiang, L. Li, J. Pan, R.A. Senthil, X. Jin, J. Cai, J. Wang, X. Liu, J. Power Sources 438 (2019) 226936. |
| [31] | K. Fang, M. Chen, J. Chen, Q. Tian, C.-.P. Wong, Appl.Surf. Sci. 475 (2019) 372-379. |
| [32] |
H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Adv. Mater. 25 (2013) 5916-5921.
DOI URL |
| [33] |
H. Chen, X. Wang, J. Li, X. Wang, J. Mater. Chem. A 3 (2015) 6073-6081.
DOI URL |
| [34] |
L. Chen, T. Ji, L. Mu, J. Zhu, Carbon N. Y. 111 (2017) 839-848.
DOI URL |
| [35] | D.L. Sivadas, R. Narasimman, R. Rajeev, K. Prabhakaran, K.N. Ninan, J. Mater. Chem. A 3 (2015) 16213-16221. |
| [36] | J. Alongi, P. Ferruti, A. Manfredi, F. Carosio, Z. Feng, M. Hakkarainen, E. Ranucci, Polym. Degrad. Stab. 169 (2019) 108993. |
| [37] |
J. Wang, S. Liu, Sep. Purif. Technol. 221 (2019) 303-310.
DOI URL |
| [38] |
N. Sheng, T. Nomura, C. Zhu, H. Habazaki, T. Akiyama, Sol. Energy Mater. Sol. Cells 192 (2019) 8-15.
DOI URL |
| [39] | M. Yuan, Z. Cui, J. Yang, X. Cui, M. Tian, D. Xu, J. Ma, Z. Dong, Int. J. Hydrog. Energy 42 (2017) 29244-29253. |
| [40] | B. Wang, K. R, X.-.Y. Lu, J. Xuan, M.K.H. Leung, Ind. Eng. Chem. Res. 52 (2013) 18251-18261. |
| [41] |
J. Zhang, B. Li, L. Li, A. Wang, J. Mater. Chem. A 4 (2016) 2069-2074.
DOI URL |
| [42] |
C. Wang, Y. Li, X. He, Y. Ding, Q. Peng, W. Zhao, E. Shi, S. Wu, A. Cao, Nanoscale 7 (2015) 7550-7558.
DOI URL |
| [43] |
R. Narasimman, K. Prabhakaran, Carbon N. Y. 50 (2012) 1999-2009.
DOI URL |
| [44] | C.N. Barnakov, G.P. Khokhlova, A.N. Popova, S.A. Sozinov, Z.R. Ismagilov, Eurasian Chem. J. 17 (2015) 87. |
| [45] |
N.K. Konstantin, B. Ozbas, C.S. Hannes, P. Robert, I.A. Aksayand, C. Roberto, Nano Lett 8 (2008) 36-41.
PMID |
| [46] | Y. Yuan, Y. Ding, C. Wang, F. Xu, Z. Lin, Y. Qin, Y. Li, M. Yang, X. He, Q. Peng, Y. Li, ACS Appl. Mater. Interfaces 8 (2016) 16 852-16 861. |
| [47] |
R. Narasimman, S. Vijayan, K. Prabhakaran, RSC Adv. 4 (2014) 578-582.
DOI URL |
| [48] |
D.D.L. Chung, Carbon N. Y. 39 (2001) 279-285.
DOI URL |
| [49] | X.-.X. Wang, W.-.Q. Cao, M.-.S. Cao, J. Yuan, Adv. Mater. 32 (2020) 2002112. |
| [50] |
X.-.X. Wang, J.-.C. Shu, W.-.Q. Cao, M. Zhang, J. Yuan, M.-.S. Cao, Chem. Eng. J. 369 (2019) 1068-1077.
DOI URL |
| [51] | L. Vazhayal, P. Wilson, K. Prabhakaran, Chem. Eng. J. 381 (2020) 122628. |
| [52] |
P. Wilson, S. Vijayan, K. Prabhakaran, Mater. Des. 139 (2018) 25-35.
DOI URL |
| [53] |
H. Wang, N. Li, W. Wang, J. Shi, Z. Xu, L. Liu, Y. Hu, M. Jing, L. Liu, X. Zhang, Chem. Eng. J. 360 (2019) 1241-1246.
DOI URL |
| [54] |
Y. Zhang, X. Wang, M. Cao, Nano Res 11 (2018) 1426-1436.
DOI URL |
| [55] |
B. Wen, M.-.S. Cao, Z.-.L. Hou, W.-.L. Song, L. Zhang, M.-.M. Lu, H.-.B. Jin, X.-.Y. Fang, W.-.Z. Wang, J. Yuan, Carbon N. Y. 65 (2013) 124-139.
DOI URL |
| [56] |
P.-.Y. Zhao, H.-.Y. Wang, G.-.S. Wang, Front. Chem. 8 (2020) 97.
DOI URL |
| [57] | B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, J. Alloys Compd. 728 (2017). |
| [58] | F. Li, W. Zhan, Y. Su, S.H. Siyal, G. Bai, W. Xiao, A. Zhou, G. Sui, X. Yang, Compos. Part A Appl. Sci. Manuf. 133 (2020) 105866. |
| [59] | Q. Liu, D. Zhang, T. Fan, Appl. Phys. Lett. 93 (2008) 13110. |
| [60] | C. Wang, J. Li, S. Guo, Compos. Part A Appl. Sci. Manuf. 125 (2019) 105522. |
| [61] |
P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal, S.R. Dhakate, Compos. Part B Eng. 160 (2019) 131-139.
DOI URL |
| [62] | P.R. Agarwal, R. Kumar, S. Kumari, S.R. Dhakate, RSC Adv. 6 (2016) 100713-100722. |
| [63] |
F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V. Mariani Primiani, Carbon N. Y. 50 (2012) 1972-1980.
DOI URL |
| [64] | M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 14 (2018) 1800987. |
| [65] |
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489.
DOI URL |
| [66] | S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Compos.Part A Appl. Sci. Manuf. 114 (2018) 49-71. |
| [67] |
R. Narasimman, S. Vijayan, K.S. Dijith, K.P. Surendran, K. Prabhakaran, Mater. Chem. Phys. 181 (2016) 538-548.
DOI URL |
| [68] |
M. Letellier, J. Macutkevic, A. Paddubskaya, A. Plyushch, P. Kuzhir, M. Ivanov, J. Banys, A. Pizzi, V. Fierro, A. Celzard, IEEE Trans. Electromagn. Compat. 57 (2015) 989-995.
DOI URL |
| [69] | Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen, D. Zhang, J. Mater. Chem. 22 (2012) 21183-21188. |
| [70] | Y.-.Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, A.C.S. Sustain, Chem. Eng. 3 (2015) 1419-1427. |
| [1] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
| [2] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
| [3] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [4] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [5] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
| [6] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| [7] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
| [8] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
| [9] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
| [10] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
| [11] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
| [12] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
| [13] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
| [14] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
| [15] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
