J. Mater. Sci. Technol. ›› 2022, Vol. 117: 167-173.DOI: 10.1016/j.jmst.2021.11.051
• Research Article • Previous Articles Next Articles
Zhenzhuang Lia,*(), Zongbin Lib, Yunzhuo Lua,*(
), Xing Lua,*(
), Liang Zuob
Received:
2021-08-28
Revised:
2021-11-20
Accepted:
2021-11-29
Published:
2022-02-18
Online:
2022-08-01
Contact:
Zhenzhuang Li,Yunzhuo Lu,Xing Lu
About author:
lu@djtu.edu.cn (X. Lu).Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy[J]. J. Mater. Sci. Technol., 2022, 117: 167-173.
Fig. 1. (a) DSC curves for the Ni50Mn35In15-xSix (x = 0, 2, 3) directionally solidified alloys. (b) Composition dependence of transformation entropy change and thermal hysteresis characterized by DSC curves. (c) M-T curves under the field of 0.005 T and 5 T for the directionally solidified Ni50Mn35In13Si2 alloy.
Fig. 2. (a) Room temperature powder XRD patterns for the Ni50Mn35In15-xSix (x = 0, 2, 3) directionally solidified alloys. (b) {2 2 0}A and {4 0 0}A incomplete pole figures for the Ni50Mn35In13Si2 directionally solidified alloy measured at room temperature (SD: solidification direction). (c) Macroscopic microstructure of the longitudinal section for the Ni50Mn35In13Si2 directionally solidified alloy.
Fig. 3. (a) Compressive stress-strain curves under a strain rate of 1.5 × 10-3 s-1 for the directionally solidified Ni50Mn35In15-xSix (x = 0, 2, 3) alloys. The inset shows the Pugh's ratio and Cauchy pressure for the Ni8Mn6In2 and Ni8Mn5In2Si1 alloys. (b) Compressive stress-strain curves with a strain rate of 1.5 × 10-3 s-1 for the directionally solidified Ni50Mn35In13Si2 alloy measured at various temperatures. The inset shows the temperature dependences of the hysteresis energy loss.
Fig. 4. Elastoclaoric properties for the directionally solidified Ni50Mn35In13Si2 alloy: (a) Time dependence of temperature variation induced by the compressive stress on loading and unloading under various strain rates. (b) Time dependence of temperature variation on removing the compressive stress of 300 MPa under the strain rate of 1.0 s-1. (c) Cyclic ΔTad values for 27 cycles of loading and unloading under the compressive stress of 300 MPa.
Alloy | Sample status | Condition | Strain rate (s-1) | |ΔTad| (K) | Refs. |
---|---|---|---|---|---|
Ni50Mn35In13Si2 | Polycrystal | Unloading | 1.0 | 17.7 | This work |
(Ni52Mn31In16Cu1)B0.2 | Polycrystal | Unloading | Without control | 9.5 | [ |
Ni50Mn31.5In16Cu2.5 | Polycrystal | Loading | 5.4 × 10-2 | 13.0 | [ |
Ni45.7Co4.2Mn37.3Sb12.8 | Polycrystal | Unloading | 1.8 × 10-2 | 9.4 | [ |
Ni50Mn30Ga20 | Single crystal | Unloading | 6.7 × 10-1 | 12.3 | [ |
Ni43Mn47Sn10 | Polycrystal | Unloading | 3.0 × 10-1 | 17.3 | [ |
Ni57Mn18Ga21In4 | Single crystal | Unloading | 4.0 | 9.6 | [ |
Ni51Mn34In8Sn7 | Polycrystal | Loading | 1.5 × 10-2 | 5.3 | [ |
Ni41Mn49Sn9.4Gd0.6 | Polycrystal | Unloading | 1.6 × 10-2 | 11.4 | [ |
Table 1. Comparison on the |ΔTad| values between the present Ni50Mn35In13Si2 alloy and some other Heusler-type alloys reported in literatures.
Alloy | Sample status | Condition | Strain rate (s-1) | |ΔTad| (K) | Refs. |
---|---|---|---|---|---|
Ni50Mn35In13Si2 | Polycrystal | Unloading | 1.0 | 17.7 | This work |
(Ni52Mn31In16Cu1)B0.2 | Polycrystal | Unloading | Without control | 9.5 | [ |
Ni50Mn31.5In16Cu2.5 | Polycrystal | Loading | 5.4 × 10-2 | 13.0 | [ |
Ni45.7Co4.2Mn37.3Sb12.8 | Polycrystal | Unloading | 1.8 × 10-2 | 9.4 | [ |
Ni50Mn30Ga20 | Single crystal | Unloading | 6.7 × 10-1 | 12.3 | [ |
Ni43Mn47Sn10 | Polycrystal | Unloading | 3.0 × 10-1 | 17.3 | [ |
Ni57Mn18Ga21In4 | Single crystal | Unloading | 4.0 | 9.6 | [ |
Ni51Mn34In8Sn7 | Polycrystal | Loading | 1.5 × 10-2 | 5.3 | [ |
Ni41Mn49Sn9.4Gd0.6 | Polycrystal | Unloading | 1.6 × 10-2 | 11.4 | [ |
Fig. 5. (a) Strain as a function of temperature (ε-T curves) during cooling and heating under various constant uniaxial compressive stresses. (b) Temperature dependence of stress-induced entropy changes ΔSσ under various stresses. The inset displays the temperature dependence of isothermal entropy change (ΔSiso) calculated through stress-strain curves. (c) Stress dependence of Ms during cooling. (d) Temperature dependence of ΔTad calculated under the stress of 300 MPa.
Alloy | Sample status | dMs/dσ (K MPa-1) | Refs. |
---|---|---|---|
Ni50Mn35In13Si2 | Polycrystal | 0.26 | This work |
Ni50Mn35In15 | Polycrystal | 0.13 | [ |
Ni45.7Co4.2Mn37.3Sb12.8 | Polycrystal | 0.22 | [ |
(Ni51.5Mn33In15.5)99.7B0.3 | Polycrystal | 0.11 | [ |
Ni48Mn35In17 | Polycrystal | 0.24 | [ |
Ni43.5Co6.5Mn39Sn11 | Polycrystal | 0.22 | [ |
Table 2. Comparison of the dMs/dσ values between the present alloy and some other Heusler-type alloys reported in literatures.
Alloy | Sample status | dMs/dσ (K MPa-1) | Refs. |
---|---|---|---|
Ni50Mn35In13Si2 | Polycrystal | 0.26 | This work |
Ni50Mn35In15 | Polycrystal | 0.13 | [ |
Ni45.7Co4.2Mn37.3Sb12.8 | Polycrystal | 0.22 | [ |
(Ni51.5Mn33In15.5)99.7B0.3 | Polycrystal | 0.11 | [ |
Ni48Mn35In17 | Polycrystal | 0.24 | [ |
Ni43.5Co6.5Mn39Sn11 | Polycrystal | 0.22 | [ |
[1] |
X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13 (2014) 439-450.
DOI PMID |
[2] |
P. Lloveras, E. Stern-Taulats, M. Barrio, J.L. Tamarit, S. Crossley, W. Li, V. Pom-jakushin, A. Planes, L. Mañosa, N.D. Mathur, X. Moya, Nat. Commun. 6 (2015) 8801.
DOI PMID |
[3] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
[4] | L. Zuo, Z.B. Li, H.L. Yan, B. Yang, X. Zhao, Acta Metall. Sin. 57 (2021) 1396-1415. |
[5] |
Z.Z. Li, Z.B. Li, B. Yang, X. Zhao, L. Zuo, Scr. Mater. 151 (2018) 61-65.
DOI URL |
[6] |
L. Manosa, A. Planes, Adv. Mater. 29 (2017) 1603607.
DOI URL |
[7] |
B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J.F. Wang, Y.N. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D.H. Yu, R. Mole, T. Hattori, T. Kikuchi, S. Yano, Z. Zhang, Z. Zhang, W.J. Ren, S.C. Lin, O. Sakata, K. Nakajima, Z.D. Zhang, Nature 567 (2019) 506-510.
DOI URL |
[8] |
L. Manosa, D. Gonzalez-Alonso, A. Planes, M. Barrio, J.L. Tamarit, I.S. Titov, M. Acet, A. Bhattacharyya, S. Majumdar, Nat. Commun. 2 (2011) 595.
DOI URL |
[9] |
H. Chen, F. Xiao, X. Liang, Z.X. Li, Z. Li, X.J. Jin, T. Fukuda, Acta Mater. 177 (2019) 169-177.
DOI URL |
[10] |
D.Y. Cong, W.X. Xiong, A. Planes, Y. Ren, L. Mañosa, P.Y. Cao, Z.H. Nie, X.M. Sun, Z. Yang, X.F. Hong, Y.D. Wang, Phys. Rev. Lett. 122 (2019) 255703.
DOI URL |
[11] |
T. Odaira, S. Xu, X. Xu, T. Omori, R. Kainuma, Appl. Phys. Rev. 7 (2020) 031406.
DOI URL |
[12] |
Z.Z. Li, Z.B. Li, D. Li, J.J. Yang, B. Yang, Y. Hu, D.H. Wang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 192 (2020) 52-59.
DOI URL |
[13] |
Y. Kim, M.G. Jo, J.W. Park, H.K. Park, H.N. Han, Scr. Mater. 144 (2018) 48-51.
DOI URL |
[14] |
Z.Z. Li, Z.B. Li, J.J. Yang, D. Li, B. Yang, H.L. Yan, Z.H. Nie, L. Hou, X. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 162 (2019) 486-491.
DOI URL |
[15] |
D.W. Zhao, J. Liu, X. Chen, W. Sun, Y. Li, M. Zhang, Y. Shao, H. Zhang, A. Yan, Acta Mater. 133 (2017) 217-223.
DOI URL |
[16] |
J.P. Camarillo-Garcia, F. Hernández-Navarro, D.E. Soto-Parra, D. Ríos-Jara, H. Flo-res-Zúñiga, Scr. Mater. 166 (2019) 92-95.
DOI URL |
[17] |
A. Gzernuszewicz, J. Kaleta, D. Lewandowski, Energy Convers. Manag. 178 (2018) 335-342.
DOI URL |
[18] |
Y.H. Qu, A. Gràcia-Condal, L. Mañosa, A. Planes, D.Y. Cong, N.H. Nie, Y. Ren, Y.D. Wang, Acta Mater. 177 (2019) 46-55.
DOI URL |
[19] |
Y. Li, W. Sun, D.W. Zhao, H. Xu, J. Liu, Scr. Mater. 130 (2017) 278-282.
DOI URL |
[20] |
T. Gottschall, K.P. Skokov, D. Benke, M.E. Gruner, O. Gutflesisch, Phys. Rev. B 93 (2016) 184431.
DOI URL |
[21] |
C. Lexcellent, P. Blanc, N. Creton, Mater. Sci. Eng. A 481-482 (2008) 334-338.
DOI URL |
[22] |
H.Y. Chen, Y.D. Wang, Z.H. Nie, R.G. Li, D.Y. Cong, W.J. Liu, F. Ye, Y.Z. Liu, P.Y. Cao, F.Y. Tian, X. Shen, R.C. Yu, L. Vitos, M.H. Zhang, S.L. Li, X.Y. Zhang, H. Zheng, J.F. Mitchell, Y. Ren, Nat. Mater. 19 (2020) 712-718.
DOI URL |
[23] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[24] |
Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater. 151 (2018) 41-55.
DOI URL |
[25] |
Y. Hu, Z.B. Li, B. Yang, S.X. Qian, W.M. Gan, Y.Y. Gong, Y. Li, D.W. Zhao, J. Liu, X. Zhao, L. Zuo, D.H. Wang, Y.W. Du, APL Mater. 5 (2017) 046103.
DOI URL |
[26] |
D. Li, X.L. Zhang, G.Y. Zhang, Z.B. Li, B. Yang, H.L. Yan, D.H. Wang, X. Zhao, L. Zuo, Appl. Phys. Lett. 118 (2021) 213903.
DOI URL |
[27] |
J.M. Wang, Q. Yu, K.Y. Xu, C. Zhang, Y.Y. Wu, C.B. Jiang, Scr. Mater. 130 (2017) 148-151.
DOI URL |
[28] |
X.H. Tang, Y. Feng, H.B. Wang, P. Wang, Appl. Phys. Lett. 114 (2019) 033901.
DOI URL |
[29] |
N.Y. Surikov, E.Y. Panchenko, E.E. Timofeeva, A.I. Tagiltsev, Y.I. Chumlyakov, J. Alloy. Compd. 880 (2021) 160553.
DOI URL |
[30] |
G.Y. Zhang, D. Li, C. Liu, Z.B. Li, B. Yang, H.L. Yan, X. Zhao, L. Zuo, Scr. Mater. 201 (2021) 113947.
DOI URL |
[31] |
J.M. Wang, Q. Yu, K.Y. Xu, C. Zhang, Y.Y. Wu, C.B. Jiang, Scr. Mater. 130 (2017) 148-151.
DOI URL |
[32] |
Y.N. Xiao, W. Sun, J. Liu, X.C. Zhong, Z.W. Liu, M.Y. Lu, K.W. Long, H. Zhang, Mater. Lett. 251 (2019) 1-4.
DOI URL |
[33] |
L.B. Wang, H.C. Xuan, S.L. Liu, T. Cao, Z.G. Xie, X.H. Liang, F.H. Chen, K.W. Zhang, L. Feng, P.D. Han, Y.C. Wu, J. Alloy. Compd. 846 (2020) 156313.
DOI URL |
[34] |
Y. Li, D.W. Zhao, J. Liu, S.X. Qian, Z.B. Li, W.M. Gan, X. Chen, ACS Appl. Mater. Interfaces 10 (2018) 25438-25445.
DOI URL |
[35] |
F. Xiao, M.J. Jin, J. Liu, X.J. Jin, Acta Mater. 96 (2015) 292-300.
DOI URL |
[36] |
Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Acta Mater. 127 (2017) 33-42.
DOI URL |
[37] |
Z. Yang, D.Y. Cong, L. Huang, Z.H. Nie, X.M. Sun, Q.H. Zhang, Y.D. Wang, Mater. Des. 92 (2016) 932-936.
DOI URL |
[38] |
Y.J. Huang, Q.D. Hu, N.M. Bruno, J. Chen, I. Karaman, J.H. Ross, J.G. Li, Scr. Mater. 105 (2015) 42-45.
DOI URL |
[39] |
G. Porcari, F. Cugini, S. Fabbrici, C. Pernechele, F. Albertini, M. Buzzi, M. Mangia, M. Solzi, Phys. Rev. B 86 (2012) 104432.
DOI URL |
[1] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[2] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[3] | Deqing Xue, Ruihao Yuan, Yuanchao Yang, Jianbo Pang, Yumei Zhou, Xiangdong Ding, Turab Lookman, Xiaobing Ren, Jun Sun, Dezhen Xue. Temperature-field history dependence of the elastocaloric effect for a strain glass alloy [J]. J. Mater. Sci. Technol., 2022, 103(0): 8-14. |
[4] | Tingting Zhang, Yuanyuan Gong, Bin Wang, Dongyu Cen, Feng Xu. Crystallography of the martensitic transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases [J]. J. Mater. Sci. Technol., 2022, 104(0): 59-66. |
[5] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[6] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[7] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[8] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[9] | Bashir S. Shariat, Yingchao Li, Hong Yang, Yunzhi Wang, Yinong Liu. On the Lüders band formation and propagation in NiTi shape memory alloys [J]. J. Mater. Sci. Technol., 2022, 116(0): 22-29. |
[10] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[11] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[12] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[13] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[14] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[15] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||