J. Mater. Sci. Technol. ›› 2022, Vol. 116: 22-29.DOI: 10.1016/j.jmst.2021.11.028
• Research Article • Previous Articles Next Articles
Bashir S. Shariata,*(), Yingchao Lia, Hong Yanga, Yunzhi Wangb, Yinong Liua,*(
)
Received:
2021-08-27
Revised:
2021-11-21
Accepted:
2021-11-23
Published:
2022-01-24
Online:
2022-07-26
Contact:
Bashir S. Shariat,Yinong Liu
About author:
yinong.liu@uwa.edu.au (Y. Liu).Bashir S. Shariat, Yingchao Li, Hong Yang, Yunzhi Wang, Yinong Liu. On the Lüders band formation and propagation in NiTi shape memory alloys[J]. J. Mater. Sci. Technol., 2022, 116: 22-29.
Fig. 3. DIC analysis of the tensile deformation behaviour of the dog-bone shaped NiTi sample. (a): The εx strain field of the sample at the moment of formation of a Lüders band. In the figure, locations of four local and one global virtual extensometers are indicated. (b): Strain-time variations of the four material points. (c): Comparison of the strain-time variations of P1 and P2 during A→M transformation. (d): Variation of the nominal stress of the sample and the average strain in the austenite region during the Lüders band formation. (e): Local strain drop before the arrival of the Lüders band during its propagation. (f): Local strain surge and relaxation after the passing of the Lüders band.
Fig. 4. The variations of strain along the centreline of the dog-bone shaped NiTi sample and the corresponding strain fields at progressive times during the formation and the propagation of the Lüders band as obtained by DIC.
Fig. 5. The strain variation within the transition zone of austenite and martensite of the dog-bone shaped NiTi sample during the Lüders band propagation of A→M transformation.
Fig. 7. DIC measurements of the uniform NiTi strip sample during tensile deformation. (a): The strain field of the sample upon the Lüders band formation during the reverse M→A transformation and the locations of points of virtual extensometers. (b): The strain-time variations at the observation points. (c): Comparison of the strain-time variations of P1 and P2 during the reverse M→A transformation. (d): Variation of the nominal stress of the sample and the average strain in the martensite region during the Lüders band formation.
Fig. 8. The variations of strain along the centreline of the uniform NiTi strip sample and the corresponding strain fields at progressive times during the formation and the propagation of the Lüders band over the reverse M→A transformation as obtained by DIC.
Fig. 9. The strain variation within the transition zone from the martensite to the austenite of the uniform NiTi strip sample during the Lüders band propagation of the reverse M→A transformation.
[1] |
S. Miyazaki, T. Imai, K. Otsuka, Y. Suzuki, Scr. Metall. 15 (1981) 853-856.
DOI URL |
[2] |
S. Miyazaki, K. Otsuka, Y. Suzuki, Scr. Metall. 15 (1981) 287-292.
DOI URL |
[3] |
Y. Liu, Y. Liu, J.V. Humbeeck, Scr. Mater. 39 (1998) 1047-1055.
DOI URL |
[4] |
L. Orgéas, D. Favier, Acta Mater 46 (1998) 5579-5591.
DOI URL |
[5] |
K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I.V. Kireeva, Acta Mater 47 (1999) 1203-1217.
DOI URL |
[6] |
G. Tan, Y. Liu, P. Sittner, M. Saunders, Scr. Mater. 50 (2004) 193-198.
DOI URL |
[7] |
E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, H. Tobushi, Exp. Mech. 46 (2006) 531-542.
DOI URL |
[8] |
D. Favier, H. Louche, P. Schlosser, L. Orgéas, P. Vacher, L. Debove, Acta Mater 55 (2007) 5310-5322.
DOI URL |
[9] |
B.S. Shariat, S. Bakhtiari, H. Yang, Y. Liu, J. Alloys Compd. 806 (2019) 1522-1528.
DOI URL |
[10] |
J.A. Shaw, S. Kyriakides, Acta Mater 45 (1997) 683-700.
DOI URL |
[11] |
L.C. Brinson, I. Schmidt, R. Lammering, J. Mech. Phys. Solids 52 (2004) 1549-1571.
DOI URL |
[12] |
T. Niendorf, J. Lackmann, B. Gorny, H.J. Maier, Scr. Mater. 65 (2011) 915-918.
DOI URL |
[13] |
Z. Wang, J. Everaerts, E. Salvati, A.M. Korsunsky, J. Alloy. Compd. 819 (2020) 153024.
DOI URL |
[14] |
H.M. Paranjape, P.P. Paul, H. Sharma, P. Kenesei, J.-. S. Park, T.W. Duerig, L.C. Brinson, A.P. Stebner, J. Mech. Phys. Solids 102 (2017) 46-66.
DOI URL |
[15] |
P. Gao, R. Li, Y. Liu, G. Chen, M. Zhu, Y. Jian, Z. Wu, X. Lu, Y. Ren, C. Li, Mater. Sci. Eng. A 805 (2021) 140560.
DOI URL |
[16] |
L. Heller, P. Šittner, P. Sedlák, H. Seiner, O. Tyc, L. Kade ˇrávek, P. Sedmák, M. Vronka, Int. J. Plast. 116 (2019) 232-264.
DOI URL |
[17] |
O. Molnárová, P. Šittner, J. Veselý, M. Cieslar, Mater. Charact. 167 (2020) 110470.
DOI URL |
[18] |
S. Daly, G. Ravichandran, K. Bhattacharya, Acta Mater 55 (2007) 3593-3600.
DOI URL |
[19] |
B. Reedlunn, C.B. Churchill, E.E. Nelson, J.A. Shaw, S.H. Daly, J. Mech. Phys. Solids 63 (2014) 506-537.
DOI URL |
[20] |
N.J. Bechle, S. Kyriakides, Extreme Mech. Lett. 8 (2016) 55-63.
DOI URL |
[21] |
X. Bian, A .A. Saleh, E.V. Pereloma, C.H.J. Davies, A.A. Gazder, Mater. Sci. Eng. A 726 (2018) 102-112.
DOI URL |
[22] |
X. Bian, A.A. Gazder, A.A. Saleh, E.V. Pereloma, J. Alloy. Compd. 777 (2019) 723-735.
DOI URL |
[23] |
K. Huang, Q. Sun, C. Yu, H. Yin, Mater. Sci. Eng. A 786 (2020) 139389.
DOI URL |
[24] |
B.S. Shariat, S. Bakhtiari, H. Yang, Y. Liu, J. Alloy. Compd. 851 (2021) 156103.
DOI URL |
[25] |
P. Sittner, Y. Liu, V. Novak, J. Mech. Phys. Solids 53 (2005) 1719-1746.
DOI URL |
[26] |
S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, Acta Mater 58 (2010) 3357-3366.
DOI URL |
[27] |
R.T. Watkins, B. Reedlunn, S. Daly, J.A. Shaw, Int. J. Solids Struct. 146 (2018) 1-28.
DOI URL |
[28] |
Q.-.P. Sun, Z.-.Q. Li, Int. J. Solids Struct. 39 (2002) 3797-3809.
DOI URL |
[29] |
N.J. Bechle, S. Kyriakides, Int. J. Plast. 82 (2016) 1-31.
DOI URL |
[30] |
D. Jiang, S. Kyriakides, C.M. Landis, K. Kazinakis, Eur. J. Mech. A-Solids 64 (2017) 131-142.
DOI URL |
[31] |
X. Zhang, P. Feng, Y. He, T. Yu, Q. Sun, Int. J. Mech. Sci. 52 (2010) 1660-1670.
DOI URL |
[32] |
J.A. Shaw, Int. J. Plast. 16 (2000) 541-562.
DOI URL |
[33] |
J.A. Shaw, S. Kyriakides, Int. J. Plast. 13 (1997) 837-871.
DOI URL |
[34] |
S. Wang, L. Cui, S. Hao, D. Jiang, Y. Liu, Z. Liu, S. Mao, X. Han, Y. Ren, Sci. Rep. 4 (2014) 6753.
DOI URL |
[35] |
L. Kaufman, M. Cohen, Prog. Met. Phys. 7 (1958) 165-246.
DOI URL |
[36] |
G. Laplanche, J. Pfetzing-Micklich, G. Eggeler, Acta Mater 78 (2014) 144-160.
DOI URL |
[37] |
B.-.C. Chang, J.A. Shaw, M.A. Iadicola, Continuum Mech. Thermodyn. 18 (2006) 83-118.
DOI URL |
[38] | B.S. Shariat, IOP Conference Series: Materials Science and Engineering 831 (2020) 012006. |
[39] |
C. Elibol, M.F.X. Wagner, Mater. 11 (2018) 1458.
DOI URL |
[40] |
Y. Liu, I. Houver, H. Xiang, L. Bataillard, S. Miyazaki, Metall. Mater. Trans. A 30 (1999) 1275-1282.
DOI URL |
[1] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[2] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[3] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[4] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
[5] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[6] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[7] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[8] | Tingting Zhang, Yuanyuan Gong, Bin Wang, Dongyu Cen, Feng Xu. Crystallography of the martensitic transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases [J]. J. Mater. Sci. Technol., 2022, 104(0): 59-66. |
[9] | M.M. Costa, A. Miranda, F. Bartolomeu, O. Carvalho, S. Matos, G. Miranda, F.S. Silva. NiTi laser textured implants with improved in vivo osseointegration: An experimental study in rats [J]. J. Mater. Sci. Technol., 2022, 114(0): 120-130. |
[10] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[11] | Qiyu Wang, Shenghu Chen, Xinliang Lv, Haichang Jiang, Lijian Rong. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114(0): 7-15. |
[12] | A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 90-101. |
[13] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[14] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[15] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||