J. Mater. Sci. Technol. ›› 2022, Vol. 112: 291-300.DOI: 10.1016/j.jmst.2021.09.060
• Research Article • Previous Articles Next Articles
Hongcan Chena, Wei Xub, Qun Luoa,*(), Qian Lia,c,*(
), Yu Zhangd, Jingjing Wangd, Kuo-Chih Choua
Received:
2021-07-01
Revised:
2021-09-06
Accepted:
2021-09-24
Published:
2021-12-26
Online:
2021-12-26
Contact:
Qun Luo,Qian Li
About author:
shuliqian@shu.edu.cn (Q. Li).Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model[J]. J. Mater. Sci. Technol., 2022, 112: 291-300.
Steels | C (at.%) | Ni (at.%) | Mn (at.%) | Si (at.%) | Cr (at.%) | HT (K) | Refs. |
---|---|---|---|---|---|---|---|
Fe-C | 0.9 | - | - | - | - | - | [ |
1.7 | - | - | - | - | |||
2.7 | - | - | - | - | |||
3.6 | - | - | - | - | |||
4.5 | - | - | - | - | |||
Fe-Ni | - | 4.6 | - | - | - | - | [ |
- | 9.0 | - | - | - | |||
- | 17.6 | - | - | - | |||
Fe-C-Ni | 0.5 | 18.3 | - | - | - | - | [ |
0.5 | 9.1 | - | - | - | |||
0.5 | 4.3 | - | - | - | |||
0.9 | 15.6 | - | - | - | |||
0.9 | 7.9 | - | - | - | |||
1.0 | 4.1 | - | - | - | |||
Fe-Mn | - | - | 1.7 | - | - | 1273 | This work |
- | - | 4.1 | - | - | |||
- | - | 8.6 | - | - | |||
Fe-C-Mn | 0.9 | - | 1.3 | - | - | 1173 | This work |
0.6 | - | 4.0 | - | - | |||
0.7 | - | 7.7 | - | - | |||
1.3 | - | 1.6 | - | - | |||
1.1 | - | 3.7 | - | - | |||
1.4 | - | 5.3 | - | - | |||
Fe-Si | - | - | - | 0.7 | - | 1373 | This work |
- | - | - | 1.5 | - | |||
Fe-C-Si | 0.5 | - | - | 1.2 | - | 1323 | This work |
0.5 | - | - | 2.5 | - | |||
1.1 | - | - | 1.0 | - | |||
0.9 | - | - | 1.4 | - | |||
Fe-Cr | - | - | - | - | 2.1 | 1323 | This work |
- | - | - | - | 5.5 | |||
- | - | - | - | 11.0 | |||
Fe-C-Cr | 0.4 | - | - | - | 1.7 | 1223 | This work |
0.4 | - | - | - | 4.5 | |||
0.5 | - | - | - | 7.9 | |||
0.9 | - | - | - | 1.6 | |||
0.8 | - | - | - | 4.0 | |||
1.0 | - | - | - | 6.5 |
Table 1. The actual chemical composition and heating temperature during dilatational measurement for the investigated steels.
Steels | C (at.%) | Ni (at.%) | Mn (at.%) | Si (at.%) | Cr (at.%) | HT (K) | Refs. |
---|---|---|---|---|---|---|---|
Fe-C | 0.9 | - | - | - | - | - | [ |
1.7 | - | - | - | - | |||
2.7 | - | - | - | - | |||
3.6 | - | - | - | - | |||
4.5 | - | - | - | - | |||
Fe-Ni | - | 4.6 | - | - | - | - | [ |
- | 9.0 | - | - | - | |||
- | 17.6 | - | - | - | |||
Fe-C-Ni | 0.5 | 18.3 | - | - | - | - | [ |
0.5 | 9.1 | - | - | - | |||
0.5 | 4.3 | - | - | - | |||
0.9 | 15.6 | - | - | - | |||
0.9 | 7.9 | - | - | - | |||
1.0 | 4.1 | - | - | - | |||
Fe-Mn | - | - | 1.7 | - | - | 1273 | This work |
- | - | 4.1 | - | - | |||
- | - | 8.6 | - | - | |||
Fe-C-Mn | 0.9 | - | 1.3 | - | - | 1173 | This work |
0.6 | - | 4.0 | - | - | |||
0.7 | - | 7.7 | - | - | |||
1.3 | - | 1.6 | - | - | |||
1.1 | - | 3.7 | - | - | |||
1.4 | - | 5.3 | - | - | |||
Fe-Si | - | - | - | 0.7 | - | 1373 | This work |
- | - | - | 1.5 | - | |||
Fe-C-Si | 0.5 | - | - | 1.2 | - | 1323 | This work |
0.5 | - | - | 2.5 | - | |||
1.1 | - | - | 1.0 | - | |||
0.9 | - | - | 1.4 | - | |||
Fe-Cr | - | - | - | - | 2.1 | 1323 | This work |
- | - | - | - | 5.5 | |||
- | - | - | - | 11.0 | |||
Fe-C-Cr | 0.4 | - | - | - | 1.7 | 1223 | This work |
0.4 | - | - | - | 4.5 | |||
0.5 | - | - | - | 7.9 | |||
0.9 | - | - | - | 1.6 | |||
0.8 | - | - | - | 4.0 | |||
1.0 | - | - | - | 6.5 |
Fig. 1. Comparison of calculated and experimental magnetic parameters: (a, b) the bcc phase in Fe-Mn system, (c, d) the bcc phase in Fe-Cr system, (e, f) the bcc phase in Fe-Ni system, (g, h) the fcc phase in Fe-Ni system.
Fig. 7. Comparison of calculated results by three methods SVR, LR, and CFF: (a-c) calculated $\frac{\text{ }\!\!\Delta\!\!\text{ }L}{L}$ vs. experimental, (d-f) calculated $\frac{\text{ }\!\!\Delta\!\!\text{ }L}{L}-{{x}_{\text{C}}}$ at 300 K, 500 K, 800 K, and (g-i) predicted Ms in Fe-C system.
Fig. 8. Comparison of predicted Ms curves and experimental in (a) Fe-Ni (b) Fe-Mn (c) Fe-Cr (d) Fe-Si binary system by different thermodynamics models (there are no experimental data of Ms in Fe-Si system because it was not found in the literature).
Fig. 9. Predicted Ms in (a) Fe-C-Mn (b) Fe-C-Cr (c) Fe-C-Si system, and (d) the experimental Ms vs. predicted Ms in Fe-C-X (X= Ni, Mn, Si, Cr) by three models.
[1] |
M. Zhang, H. Chen, Y. Wang, S. Wang, R. Li, S. Li, Y. Wang, J. Mater. Sci. Technol. 35 (2019) 1779-1786.
DOI URL |
[2] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[3] |
Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, R.D.K. Misra, Int. J. Miner. Metall. Mater. 27 (2020) 1-9.
DOI URL |
[4] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[5] |
M.C. Jo, S. Kim, D.W. Suh, H.K. Kim, Y.J. Kim, S.S. Sohn, S. Lee, J. Mater. Sci. Technol. 84 (2021) 219-229.
DOI URL |
[6] |
L. Liu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, Scr. Mater. 150 (2018) 1-6.
DOI URL |
[7] |
B. Hu, H. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457-1464.
DOI URL |
[8] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[9] |
Y. Li, D.S. Martín, J. Wang, C. Wang, W. Xu, J. Mater. Sci. Technol. 91 (2021) 200-214.
DOI URL |
[10] |
K. Chen, H. Li, Z. Jiang, F. Liu, C. Kang, X. Ma, B. Zhao, J. Mater. Sci. Technol. 72 (2021) 81-92.
DOI |
[11] |
Q.K. Meng, J.D. Xu, H. Li, C.H. Zhao, J.Q. Qi, F.X. Wei, Y.W. Sui, W. Ma, Rare Met 41 (2021) 209-217.
DOI URL |
[12] |
J.P. Lai, J.X. Yu, J. Wang, Int. J. Miner. Metall. Mater. 28 (2021) 676-687.
DOI URL |
[13] |
T.Y. Hsu, H.B. Chang, Acta Metall 32 (1984) 343-348.
DOI URL |
[14] |
T.Y. Hsu, J. Mater. Sci. 20 (1985) 23-31.
DOI URL |
[15] |
K. Ishida, J. Alloys Compd. 220 (1995) 126-131.
DOI URL |
[16] |
G. Ghosh, G.B. Olson, Acta Metall. Mater. 42 (1994) 3361-3370.
DOI URL |
[17] |
G. Ghosh, G.B. Olson, Acta Metall. Mater. 42 (1994) 3371-3379.
DOI URL |
[18] |
G. Ghosh, G.B. Olson, J. Phase Equilib. 22 (2001) 199-207.
DOI URL |
[19] |
Q. Luo, H.C. Chen, W. Chen, C.C. Wang, W. Xu, Q. Li, Scr. Mater. 187 (2020) 413-417.
DOI URL |
[20] |
S.M. Choi, J.S. Hong, J.H. Nam, W. Cho, D.W. Suh, Y.K. Lee, Mater. Charact. 163 (2020) 110279.
DOI URL |
[21] | W. Chen, H.C. Chen, Q. Li, C.C. Wang, W. Xu, Q. Luo, K.C. Chou, Acta Metall. Sin. 57 (2021) 393-402. (in Chinese) |
[22] |
N. Nakada, N. Kusunoki, M. Kajihara, J. Hamada, Scr. Mater. 138 (2017) 105-108.
DOI URL |
[23] |
J.M. Moyer, G.S. Ansell, Metall. Trans. A 6 (1975) 1785-1791.
DOI URL |
[24] |
H.S. Yang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23 (2007) 556-560.
DOI URL |
[25] |
S.M.C. van Bohemen, Scr. Mater. 69 (2013) 315-318.
DOI URL |
[26] |
X. Huang, H. Wang, W. Xue, A. Ullah, S. Xiang, H. Huang, L. Meng, G. Ma, G. Zhang, J. Alloys Compd. 823 (2020) 153694.
DOI URL |
[27] |
L. Qiao, Z. Lai, Y. Liu, A. Bao, J. Zhu, J. Alloys Compd. 853 (2021) 156959.
DOI URL |
[28] |
Y. Zhi, T. Yang, D. Fu, J. Mater. Sci. Technol. 49 (2020) 202-210.
DOI URL |
[29] |
A.J. Smola, B. Schölkopf, Statist. Comput. 14 (2004) 199-222.
DOI URL |
[30] |
Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater.. 29 (2022) 32-48.
DOI URL |
[31] |
C.G. Shen, C.C. Wang, X.L. Wei, Y. Li, S. van der Zwaag, W. Xu, Acta Mater 179 (2019) 201-214.
DOI URL |
[32] |
A. Eres-Castellanos, I. Toda-Caraballo, A. Latz, F.G. Caballero, C. Garcia-Mateo, Mater. Des. 188 (2020) 108435.
DOI URL |
[33] |
G. Ghosh, G.B. Olson, Acta Mater 50 (2002) 2655-2675.
DOI URL |
[34] |
S.G.E. te Velthuis, J.H. Root, J. Sietsma, M.T. Rekveldt, S. van der Zwaag, Acta Mater 46 (1998) 5223-5228.
DOI URL |
[35] | P. Gustafson, Scand. J. Metall. 14 (1985) 259-267. |
[36] |
A. Gabriel, P. Gustafson, I. Ansara, Calphad 11 (1987) 203-218.
DOI URL |
[37] |
W. Xiong, H. Zhang, L. Vitos, M. Selleby, Acta Mater 59 (2011) 521-530.
DOI URL |
[38] |
W. Huang, Calphad 13 (1989) 243-252.
DOI URL |
[39] |
S. Bigdeli, M. Selleby, Calphad 64 (2019) 185-195.
DOI URL |
[40] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
[41] |
J. Lacaze, B. Sundman, Metall. Trans. A 22 (1991) 2211-2223.
DOI URL |
[42] |
S. Cui, I.H. Jung, Calphad 56 (2017) 108-125.
DOI URL |
[43] |
S. Hertzman, B. Sundman, Calphad 6 (1982) 67-80.
DOI URL |
[44] |
W. Xiong, P. Hedström, M. Selleby, J. Odqvist, M. Thuvander, Q. Chen, Calphad 35 (2011) 355-366.
DOI URL |
[45] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71.
DOI URL |
[46] |
D. Djurovic, B. Hallstedt, J. von Appen, R. Dronskowski, Calphad 35 (2011) 479-491.
DOI URL |
[47] |
J.O. Andersson, Metall. Trans. A 19 (1988) 627-636.
DOI URL |
[48] |
O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345-348.
DOI URL |
[49] |
G. Kirchner, T. Nishizawa, B. Uhrenius, Metall. Trans. 4 (1973) 167-174.
DOI URL |
[50] |
D.W. Suh, C.S. Oh, H.N. Han, S.J. Kim, Acta Mater 55 (2007) 2659-2669.
DOI URL |
[51] |
J.C. Zhao, Z.P. Jin, Acta Metall. Mater. 38 (1990) 425-431.
DOI URL |
[52] |
E.A. Wilson, Met. Sci. 18 (1984) 471-484.
DOI URL |
[53] |
J.D. Bolton, E.R. Petty, Met. Sci. J. 5 (1971) 166-173.
DOI URL |
[54] |
J. Wang, P.J. Van Der Wolk, S. Van Der Zwaag, Mater. Trans. JIM 41 (2000) 761-768.
DOI URL |
[1] | Tingting Zhang, Yuanyuan Gong, Bin Wang, Dongyu Cen, Feng Xu. Crystallography of the martensitic transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases [J]. J. Mater. Sci. Technol., 2022, 104(0): 59-66. |
[2] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[3] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[4] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[5] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[6] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[7] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[8] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[9] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[10] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[11] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[12] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[13] | Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning [J]. J. Mater. Sci. Technol., 2021, 92(0): 31-39. |
[14] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[15] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||