J. Mater. Sci. Technol. ›› 2022, Vol. 112: 301-314.DOI: 10.1016/j.jmst.2021.09.050
• Research Article • Previous Articles Next Articles
H.Y. Songa,b, M.C. Lama,b,*(), Y. Chenc, S. Wua,b, P.D. Hodgsond, X.H. Wua,b, Y.M. Zhua,b,*(
), A.J. Huanga,b
Received:
2021-05-14
Revised:
2021-09-16
Accepted:
2021-09-22
Published:
2021-12-12
Online:
2021-12-12
Contact:
M.C. Lam,Y.M. Zhu
About author:
Yuman.Zhu@monash.edu (Y.M. Zhu).H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC[J]. J. Mater. Sci. Technol., 2022, 112: 301-314.
Ni | Cr | Co | Ti | Al | W | Mo | Ta | Nb | C | B | Si | N | O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before SLM | Bal. | 16.3 | 8.66 | 3.57 | 3.51 | 2.51 | 1.96 | 1.45 | 0.87 | 0.11 | <0.02 | 0.08 | 0.0034 | 0.03 |
After SLM | Bal. | 16.4 | 8.73 | 3.59 | 3.52 | 2.61 | 1.97 | 1.55 | 0.88 | 0.11 | <0.02 | 0.07 | 0.004 | 0.05 |
Table 1. Chemical composition of IN738LC powder before and after SLM processing (wt.%).
Ni | Cr | Co | Ti | Al | W | Mo | Ta | Nb | C | B | Si | N | O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before SLM | Bal. | 16.3 | 8.66 | 3.57 | 3.51 | 2.51 | 1.96 | 1.45 | 0.87 | 0.11 | <0.02 | 0.08 | 0.0034 | 0.03 |
After SLM | Bal. | 16.4 | 8.73 | 3.59 | 3.52 | 2.61 | 1.97 | 1.55 | 0.88 | 0.11 | <0.02 | 0.07 | 0.004 | 0.05 |
Fig. 1. OM images showing a low porosity for as-built samples: (a) XY plane in low magnification, (b) YZ plane in low magnification, (c) XY plane in high magnification and (d) YZ plane in high magnification.
Fig. 4. EBSD IPF maps of as-built IN738LC sample showing (a) representative 3D reconstructed grain structure, (b) grain structure in XY plane, (c) grain structure in YZ plane and (d) corresponding pole figures from YZ plane.
Fig. 5. (a) BSE image, (b) BF-TEM micrograph and (c) SAED revealing bright secondary particles observed in the as-SLMed sample, (d) HAADF-STEM image and (e-k) corresponding STEM-EDX element maps showing the relative chemical composition of this bright phase. SAED pattern was taken along <001>Ni zone axis.
Fig. 6. EBSD-IPF maps showing grain structure of heat-treated samples with (a) one-step heat treatment at 1230 °C/2 h and two-step heat treatment at (c) 850 °C/24 h + 1230 °C/2 h, (e) 950 °C/24 h + 1230 °C/2 h, (g) 1050 °C/24 h + 1230 °C/2 h; (b, d, f, h) corresponding {100} pole figures, respectively.
Fig. 8. BSE images showing grain boundary phases (marked by white arrows) of samples subject to the first-step heating of (a) 850 °C/24 h, (b) 950 °C/24 h, (c) 1050 °C/24 h.
Fig. 9. (a) BF-TEM micrograph and (b) SAED revealing dark secondary particles observed in the sample after first-step heat treatment of 950 °C/24 h, (c) HAADF-STEM image and (d-j) corresponding STEM-EDX element maps showing the relative chemical composition of this grain boundary phase. SAED pattern was taken along <001>Ni zone axis.
Fig. 10. Plot of average grain size as a function of heating time for the two investigated heating schedules (one-step heat treatment at 1230 °C and two-step heat treatment of 950 °C/24 h + 1230 °C) showing different grain growth behaviours.
Fig. 11. Grain structure of the heat-treated samples before the creep test: EBSD IPF maps showing the grain size and morphology for the sample subject to (a) SHT, (b) 950 °C/24 h + 1230 °C/10 h+ SHT.
Fig. 12. Microstructure of the heat-treated samples before the creep test: BSE images showing the strengthening γ' phases and grain boundary MC carbides for the samples subjected to (a, c) SHT and (b, d) 950 °C/24 h + 1230 °C/10 h+ SHT.
Fig. 13. (a) High-temperature (850 °C) creep curves for heat-treated SLM-IN738LC specimens under two stress testing conditions. (b) Plot of secondary creep rate vs stress for the above creep test.
Fig. 14. Misorientation angle distribution showing the grain boundary misorientation relationship observed in (a) as-SLMed sample and (b) 950 °C/24 h sample.
Fig. 16. SE images showing intergranular fracture mode for crept samples under (a) SHT condition, (b) 950 °C/24 h + 1230 °C/10 h+ SHT condition and their corresponding crack distribution (c), (d), respectively.
Fig. 17. BF-STEM micrograph revealing dislocation substructure observed in crept (200 MPa) samples under (a) SHT condition, (b) 950 °C/24 h + 1230 °C/10 h+ SHT condition. Micrographs were taken along <110>Ni zone axis.
[1] |
E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639 (2015) 647-655.
DOI URL |
[2] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater 117 (2016) 371-392.
DOI URL |
[3] | O. Messé, R. Muñoz-Moreno, T. Illston, S. Baker, H. Stone, Addit. Manuf. 22 (2018) 394-404. |
[4] |
E. Uhlmann, A. Bergmann, W. Gridin, Procedia Cirp. 35 (2015) 8-15.
DOI URL |
[5] | A. Hilaire, E. Andrieu, X. Wu, Addit. Manuf. 26 (2019) 147-160. |
[6] |
P. Kumar, U. Ramamurty, Acta Mater. 169 (2019) 45-59.
DOI URL |
[7] |
S. Shakerin, H. Omidvar, S.E. Mirsalehi, Mater. Des. 89 (2016) 611-619.
DOI URL |
[8] |
G. El-Awadi, S. Abdel-Samad, E.S. Elshazly, Appl. Surf. Sci. 378 (2016) 224-230.
DOI URL |
[9] |
D.-Y. Kim, J.-H. Hwang, K.-S. Kim, J.-G. Youn, J. Eng. Gas Turbines Power 122 (3) (2000) 457-461.
DOI URL |
[10] |
L. Rickenbacher, T. Etter, S. Hövel, K. Wegener, Rapid Prototyp. J. 19 (2013) 282-290.
DOI URL |
[11] |
K. Kunze, T. Etter, J. Grässlin, V. Shklover, Mater. Sci. Eng. A 620 (2015) 213-222.
DOI URL |
[12] |
J. Xu, H. Gruber, D. Deng, R.L. Peng, J.J. Moverare, Acta Mater. 179 (2019) 142-157.
DOI URL |
[13] |
R. Coble, J. Appl. Phys. 34 (6) (1963) 1679-1682.
DOI URL |
[14] |
O.D. Sherby, E.M. Taleff, Mater. Sci. Eng. A 322 (1-2) (2002) 89-99.
DOI URL |
[15] |
F. Geiger, K. Kunze, T. Etter, Mater. Sci. Eng. A 661 (2016) 240-246.
DOI URL |
[16] | R. Engeli, T. Etter, F. Geiger, A. Stankowski, K. Wegener, Solid Freeform Fabri- cation Symposium, 2015. |
[17] |
D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.-F. Rideau, S. Vaillant, Phys. Procedia 41 (2013) 823-827.
DOI URL |
[18] | B. Geddes, H. Leon, X. Huang, Compositional effects, Superalloys: Alloying and Performance, ASM International, 2010. |
[19] |
L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Mater. Sci. Technol. 32 (7) (2016) 657-661.
DOI URL |
[20] |
R. Stevens, P. Flewitt, Mater. Sci. Eng. 50 (2) (1981) 271-284.
DOI URL |
[21] |
V. Divya, R. Muñoz-Moreno O. Messé, J. Barnard, S. Baker, T. Illston, H. Stone, Mater. Charact. 114 (2016) 62-74.
DOI URL |
[22] |
D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, X. Wu, Mater. Sci. Eng. A 667 (2016) 42-53.
DOI URL |
[23] |
J. Wang, L. Zhou, X. Qin, L. Sheng, J. Hou, J. Guo, Mater. Sci. Eng. A 553 (2012) 14-21.
DOI URL |
[24] |
J. Ma, X. Yang, Q. Huo, H. Sun, J. Qin, J. Wang, Mater. Des. 47 (2013) 505-509.
DOI URL |
[25] |
A.K. Koul, R. Thamburaj, Metall. Trans. A 16 (1) (1985) 17-26.
DOI URL |
[26] |
R. Steven, P. Flewitt, J. Mater. Sci. 13 (2) (1978) 367-376.
DOI URL |
[27] | J. Vitek, D. Gandy, S. Babu, G. Frederick, Alloy Development of Nickel-based Su- peralloy Weld Filler Metals Using Computational Thermodynamics, Oak Ridge National Laboratories, Oak Ridge, TN, 2001. |
[28] |
H.-R. Zhang, O. Ojo, Philos. Mag. 90 (6) (2010) 765-782.
DOI URL |
[29] |
F. Zhang, L.E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M. E. Williams, Y. Idell, C.E. Campbell, Acta Mater. 152 (2018) 200-214.
DOI URL |
[30] |
G. Higgins, Metal Sci. 8 (1) (1974) 143-150.
DOI URL |
[31] |
M. Upmanyu, D. Srolovitz, L. Shvindlerman, G. Gottstein, Acta Mater. 47 (14)(1999) 3901-3914.
DOI URL |
[32] |
D. Molodov, L. Shvindlerman, G. Gottstein, Zeitschrift für Metallkunde 94 (10)(2003) 1117-1126.
DOI URL |
[33] |
H. Buken, E. Kozeschnik, Mater. Trans. A 48 (6) (2017) 2812-2818.
DOI URL |
[34] |
Y. Huang, F. Humphreys, Mater. Chem. Phys. 132 (1) (2012) 166-174.
DOI URL |
[35] |
T. Malow, C. Koch, Acta Mater. 45 (5) (1997) 2177-2186.
DOI URL |
[36] |
S. Xu, J. Dickson, A. Koul, Metall. Mater. Trans. A 29 (11) (1998) 2687-2695.
DOI URL |
[37] | S. Singh Handa, Precipitation of Carbides in a Ni-based Superalloy, Master Thesis, University West, 2014. |
[38] | J. Shi, S. Zhou, H. Chen, G. Cao, A. Russell, Z. Zhou, X. Qi, C. Li, G. Chen, Mater. Sci. Eng. A (2020) 140583. |
[39] | G. Gladysz, K. Chawla, in: Voids in Materials, 2015, pp. 13-35. |
[40] | R. Castillo, A. Koul, J. Immarigeon, Superalloys 1988 (1988) 805-813. |
[41] |
S. Xu, X.-J. Wu, A. Koul, J. Dickson, Metall. Mater. Trans. A 30 (4) (1999) 1039-1045.
DOI URL |
[42] |
T. Langdon, Acta Metall. Mater. 42 (7) (1994) 2437-2443.
DOI URL |
[43] |
A. Epishin, B. Fedelich, G. Nolze, S. Schriever, T. Feldmann, M.F. Ijaz, B. Viguier, D. Poquillon, Y.Le Bouar, A. Ruffini, Metall. Mater. Trans. A 49 (9) (2018) 3973-3987.
DOI URL |
[44] |
D. Bae, A. Ghosh, Acta Mater. 48 (6) (2000) 1207-1224.
DOI URL |
[45] |
C. Horton, Acta Metall. 20 (4) (1972) 477-484.
DOI URL |
[46] |
W. Sun, J. Jonas, Acta Metall. Mater. 42 (1) (1994) 283-292.
DOI URL |
[47] |
Z. Yao, M. Zhang, J. Dong, Metall. Mater. Trans. A 44 (7) (2013) 3084-3098.
DOI URL |
[48] |
L. He, Q. Zheng, X. Sun, G. Hou, H. Guan, Z. Hu, J. Mater. Sci. 40 (11) (2005) 2959-2964.
DOI URL |
[49] |
M. Nathal, R. MacKay, R. Miner, Metall. Trans. A 20 (1) (1989) 133-141.
DOI URL |
[50] | R. Stevens, P. Flewitt, Mater. Sci. Eng. 37 (3) (1979) 237-247. |
[51] |
R. Stevens, P. Flewitt, Acta Metall. 29 (5) (1981) 867-882.
DOI URL |
[52] |
A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, P. Davami, Mater. Sci. Technol. 16 (5) (2000) 579-586.
DOI URL |
[53] |
B. Dyson, M. McLean, Acta Metall 31 (1) (1983) 17-27.
DOI URL |
[54] |
G. Jianting, D. Ranucci, E. Picco, P. Strocchi, Metall. Trans. A 14 (11) (1983) 2329-2335.
DOI URL |
[1] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[2] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[3] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[4] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[5] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[6] | Wenrui An, Satoshi Utada, Xiaotong Guo, Stoichko Antonov, Weiwei Zheng, Jonathan Cormier, Qiang Feng. Thermal cycling creep properties of a directionally solidified superalloy DZ125 [J]. J. Mater. Sci. Technol., 2022, 104(0): 269-284. |
[7] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[8] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[9] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[10] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[11] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[12] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[13] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[14] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[15] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||