J. Mater. Sci. Technol. ›› 2022, Vol. 104: 269-284.DOI: 10.1016/j.jmst.2021.07.015
• Research Article • Previous Articles Next Articles
Wenrui Ana, Satoshi Utadab, Xiaotong Guoc, Stoichko Antonovd, Weiwei Zhenga, Jonathan Cormierb, Qiang Fenga,*()
Received:
2021-03-09
Revised:
2021-06-14
Accepted:
2021-07-15
Published:
2022-03-30
Online:
2021-09-08
Contact:
Qiang Feng
About author:
* E-mail address: qfeng@skl.ustb.edu.cn (Q. Feng).Wenrui An, Satoshi Utada, Xiaotong Guo, Stoichko Antonov, Weiwei Zheng, Jonathan Cormier, Qiang Feng. Thermal cycling creep properties of a directionally solidified superalloy DZ125[J]. J. Mater. Sci. Technol., 2022, 104: 269-284.
Ni | Co | Cr | W | Al | Mo | Ta | Hf | Ti | C | B |
---|---|---|---|---|---|---|---|---|---|---|
Bal. | 10.0 | 8.9 | 7.0 | 5.2 | 2.0 | 3.8 | 1.5 | 0.9 | 0.1 | 0.015 |
Table 1 Measured chemical composition of DZ125 superalloy (wt.%).
Ni | Co | Cr | W | Al | Mo | Ta | Hf | Ti | C | B |
---|---|---|---|---|---|---|---|---|---|---|
Bal. | 10.0 | 8.9 | 7.0 | 5.2 | 2.0 | 3.8 | 1.5 | 0.9 | 0.1 | 0.015 |
Test type | Specimen names | Test conditions |
---|---|---|
Thermal exposure | TS950 | Thermal exposure at 950℃/6 h |
TE950 [ | Thermal exposure at 950℃/900 h | |
TE1050 [ | Thermal exposure at 1050℃/900 h | |
TE1100 [ | Thermal exposure at 1100℃/900 h | |
Isothermal creep | I950-IR | Interrupted after 950℃/98 MPa for 100 h with <0.1% strain |
I950-NF* | Creep under 950℃/100 MPa* | |
I950-F | Failure under 950℃/270 MPa with 19% strain | |
I1100-IR | Interrupted at 1% strain under 1100℃/100 MPa | |
I1100-F | Failure under 1100℃/100 MPa with 33% strain | |
Thermal cycling creep | N0.5-2# | Interrupted at the end of 1100℃ stage with 0.5% plastic creep strain |
N1.0-1# | Interrupted at 15th min of 950℃ stage with 1% plastic creep strain | |
N1.0-2# | Interrupted at the end of 1100℃ stage with 1% plastic creep strain | |
N1.0-3# | Interrupted at 1st min of of 950℃ stage with 1% plastic creep strain | |
NF | Failure after 0.5 min at 1100℃ during the 321st cycle with 29% placstic strain |
Table 2 Specimen names for different test conditions of DZ125 superalloy.
Test type | Specimen names | Test conditions |
---|---|---|
Thermal exposure | TS950 | Thermal exposure at 950℃/6 h |
TE950 [ | Thermal exposure at 950℃/900 h | |
TE1050 [ | Thermal exposure at 1050℃/900 h | |
TE1100 [ | Thermal exposure at 1100℃/900 h | |
Isothermal creep | I950-IR | Interrupted after 950℃/98 MPa for 100 h with <0.1% strain |
I950-NF* | Creep under 950℃/100 MPa* | |
I950-F | Failure under 950℃/270 MPa with 19% strain | |
I1100-IR | Interrupted at 1% strain under 1100℃/100 MPa | |
I1100-F | Failure under 1100℃/100 MPa with 33% strain | |
Thermal cycling creep | N0.5-2# | Interrupted at the end of 1100℃ stage with 0.5% plastic creep strain |
N1.0-1# | Interrupted at 15th min of 950℃ stage with 1% plastic creep strain | |
N1.0-2# | Interrupted at the end of 1100℃ stage with 1% plastic creep strain | |
N1.0-3# | Interrupted at 1st min of of 950℃ stage with 1% plastic creep strain | |
NF | Failure after 0.5 min at 1100℃ during the 321st cycle with 29% placstic strain |
Fig. 2. Creep curves of DZ125 superalloy under the thermal cycling creep and different isothermal creep conditions. (a) Raw experimental strain vs. time curve during thermal cycling creep (NF specimen); (b) plastic creep strain vs. time curve and (c) plastic creep rate vs. strain curve during isothermal creep under 950℃/270 MPa (I950-F specimen) and 1100℃/100 MPa (I1100-F specimen), and thermal cycling creep (NF specimen). The temperature profile and the associated raw experimental strain change during the (d) 105th, (e) 292th and (f) 320th cylce of thermal cycling creep. (g) Measurement of plastic strain increment at different stages of the thermal cycle during the thermal cycling creep.
Specimen name | Rupture life (h) | Minimum creep rate (10-8 s-1) | Strain corresponds to the minimum creep rate (%) | Duration at 1100℃ (h) | Number of grains** |
---|---|---|---|---|---|
I950-NF* | >105 * | N/A | N/A | 0 | N/A |
I950-F | 105.4 | 4.5 | 0.38 | 0 | 10 |
I1100-F | 19.0 | 19.2 | 0.59 | 19.0 | 17 |
NF | 96.2 | 11.8 | 0.36 | 5.4 | 16 |
Table 3 Creep life, minimum creep rate and duration at 1100℃ of the isothermal creep under 950℃/100 MPa, 950℃/270 MPa and 1100℃/100 MPa, as well as the thermal cycling creep under (950 ℃/15 min-1100 ℃/1 min)/100 MPa of DZ125 superalloy.
Specimen name | Rupture life (h) | Minimum creep rate (10-8 s-1) | Strain corresponds to the minimum creep rate (%) | Duration at 1100℃ (h) | Number of grains** |
---|---|---|---|---|---|
I950-NF* | >105 * | N/A | N/A | 0 | N/A |
I950-F | 105.4 | 4.5 | 0.38 | 0 | 10 |
I1100-F | 19.0 | 19.2 | 0.59 | 19.0 | 17 |
NF | 96.2 | 11.8 | 0.36 | 5.4 | 16 |
Fig. 3. Typical microstructure of as-received DZ125 superalloy. (a) OM image of columnar grains along the longitudinal section. SEM images of (b) the carbides and γ/γ’ eutectic pools in the interdendritic region, (c) γ’ precipitates in the dendrite core area along the cross section. SEM images of grain boundary with (d) carbides chain and (e) M6C film.
Fig. 4. Typical microstructure of I950-IR (isothermal creep under 950℃/98 MPa for 100h) specimen. SEM images of γ’ precipitates in the dendrite cores along the (a) cross section and (b) longitudinal section; (c) TEM images of dislocation configurations in the dendrite region; SEM images of (d) interdendritic carbides, (e) a grain boundary with MC, M6C and M23C6 carbides.
Fig. 5. Typical microstructure of I1100-IR (isothermal creep under 1100℃/100 MPa with 1% strain) specimen. SEM images of γ′ precipitates in the dendrite cores along the (a) cross section and (b) longitudinal section; (c) TEM images of dislocation configurations in the dendrite region. SEM images of (d) interdendritic carbides and (b) a carbide-free grain boundary and (f) the cracked surface carbides.
Test type | Specimen name | No. of grains | Strain (%) | Time (h) | Cycles | γ' volume fraction (%) | γ channel width (nm) | γ′ thickness (nm) | Average dislocation network spacing (nm) |
---|---|---|---|---|---|---|---|---|---|
Thermal exposure | TE950 [ | N/A | N/A | 900 | N/A | 63.7±3.2 | N/A | N/A | N/A |
TE1050 [ | N/A | N/A | 900 | N/A | 49.3±3.3 | N/A | N/A | N/A | |
TE1100 [ | N/A | N/A | 900 | N/A | 39.5±4.3 | N/A | N/A | N/A | |
Interrupted isothermal creep | I950-IR | N/A | <0.1 | 100 | N/A | 65.7±2.8 | N/A | N/A | N/A* |
I1100-IR | 11 | 1 | 5.2 | N/A | 47.7±3.6 | 431±29 | 310±18 | 75±14 | |
Interrupted thermal cycling creep | N1.0-1# | 17 | 1 | 10.8 | 36 | 49.0±3.8 | 427±27 | 315±31 | 90±9 |
N1.0-2# | 8 | 1 | 23.7 | 78 | 46.0±4.0 | 480±10 | 297±20 | 98±12 | |
N1.0-3# | 7 | 1 | 20.1 | 66 | 45.1±2.9 | 444±30 | 319±35 | 96±10 |
Table 4 Number of grains, creep time, γ′ volume fraction, γ channel width, γ′ thickness and average dislocation network spacings of DZ125 superalloy under different creep conditions and thermal exposure conditions.
Test type | Specimen name | No. of grains | Strain (%) | Time (h) | Cycles | γ' volume fraction (%) | γ channel width (nm) | γ′ thickness (nm) | Average dislocation network spacing (nm) |
---|---|---|---|---|---|---|---|---|---|
Thermal exposure | TE950 [ | N/A | N/A | 900 | N/A | 63.7±3.2 | N/A | N/A | N/A |
TE1050 [ | N/A | N/A | 900 | N/A | 49.3±3.3 | N/A | N/A | N/A | |
TE1100 [ | N/A | N/A | 900 | N/A | 39.5±4.3 | N/A | N/A | N/A | |
Interrupted isothermal creep | I950-IR | N/A | <0.1 | 100 | N/A | 65.7±2.8 | N/A | N/A | N/A* |
I1100-IR | 11 | 1 | 5.2 | N/A | 47.7±3.6 | 431±29 | 310±18 | 75±14 | |
Interrupted thermal cycling creep | N1.0-1# | 17 | 1 | 10.8 | 36 | 49.0±3.8 | 427±27 | 315±31 | 90±9 |
N1.0-2# | 8 | 1 | 23.7 | 78 | 46.0±4.0 | 480±10 | 297±20 | 98±12 | |
N1.0-3# | 7 | 1 | 20.1 | 66 | 45.1±2.9 | 444±30 | 319±35 | 96±10 |
Fig. 6. Typical microstructure of I1100-F (isothermal creep to failure under 1100℃/100 MPa) specimen. OM image of morphology (a) along the longitudinal section of fracture surfaces, as well as higher magnification images of morphology near the surface along the longitudinal section (b) 7.5 mm, (c) 6.5 mm and (d) 5.6 mm from the fracture. SEM images of (b) surface cracks, (c) grain boundary cracks and (d) grain interior cracks.
Specimen | I1100-F | NF | |
---|---|---|---|
Surface cracks | Count per length (#/mm) | 14.8 | 35.3 |
Internal cracks* | Count per area (#/mm-2) | 9.9 | 43.8 |
Table 5 The density of surface cracks and internal cracks of I1100-F and NF specimens.
Specimen | I1100-F | NF | |
---|---|---|---|
Surface cracks | Count per length (#/mm) | 14.8 | 35.3 |
Internal cracks* | Count per area (#/mm-2) | 9.9 | 43.8 |
Fig. 7. SEM images of γ’ precipitates in the dendrite cores of DZ125 superalloy after the interrupted thermal cycling creep with 1% plastic creep strain: (a)N1.0-1#, (b)N1.0-2# and (c)N1.0-3#; along the (1) cross section and (2) longitudinal section.
Fig. 8. TEM images of dislocation configurations in the dendrite region of different interrupted plastic creep strain during the thermal cycling creep: (a) N0.5-2#, (b) N1.0-1# and (c) N1.0-2#, B = [001].
Fig. 9. Typical microstructure in the interdendritic region and surface of DZ125 superalloy after interrupted thermal cycling creep specimens with 1% plastic creep strain. SEM images of (a) carbides in N1.0-1#, (b) fractured surface oxidized carbides in N1.0-1# and (c) carbides-free grain boundary in N1.0-2#.
Fig. 10. Typical microstructure of NF (thermal cycling creep to failure) specimen. OM images of morphology (a) along longitudinal section of fracture surfaces, as well as higher magnification images of near the surface along the longitudinal section (b) 7.5 mm, (c) 6.5 mm and (d) 5.6 mm from the fracture. SEM images of (e) surface cracks, (f) a higher magnification corresponding to the contents in the box in (e), (g) fractured surface carbide, (h) grain boundary cracks and (i) grain interior cracks.
Fig. 11. SEM images of carbides of TS950 (thermal exposure at 950℃ for 6 h) specimen: fractured carbides (a) in surface observed on top view and (b) near surface observed along cross section, (c) unfractured internal carbides observed along cross section.
[1] |
W.X. Zhao, Y. Li, Y.W. Fan, Y.R. Zheng, J. Mater. Eng. Perform. 8 (2012) 39, doi: 10.3969/j.issn.1001-4381.2013.06.001.
DOI |
[2] |
J. Cormier, X. Milhet, J.L. Champion, J. Mendez, Adv. Eng. Mater. 10 (1-2) (2008) 56-61, doi: 10.1002/adem.200700248.
DOI URL |
[3] |
H.M. Tawancy, L.M. Al-Hadhrami, Eng. Fail. Anal. 16 (1) (2009) 273-280, doi: 10.1016/j.engfailanal.2008.05.001.
DOI URL |
[4] |
X.T. Guo, W.W. Zheng, C.B. Xiao, L.F. Li, S. Antonov, Y.R. Zheng, Q. Feng, Eng. Fail. Anal. 103 (2019) 308-318, doi: 10.1016/j.engfailanal.2019.04.021.
DOI URL |
[5] | J. Cormier, in: M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V.t Seetharaman, S. Tin (Eds.), Superalloys 2016: Proceedings of the 13th Inte-national Symposium of Superalloys, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2016, pp. 383-394. |
[6] | C.L. Corey, J.P. Rowe, J.W. Freeman, Progress report to the National Advisory Committee for Aeronautics covering research on heat-resistant alloys, Michi-gan, University of Michigan, Michigan, 1955. |
[7] | J.P. Rowe, J.W. Freeman, Effect of overheating on the creep-rupture properties of HS31 alloy, University of Michigan, Michigan, 1956. |
[8] | J.P. Rowe, J.W. Freeman, H.R. Voorhees, Final report to the General Electric Company Aircraft Gas Turbine Division on Effect of Overheating on the Creep- -Rupture Properties of Udimet500 alloy at 16000 °F and 28,50 0 PSI, University of Michigan, Michigan, 1957. |
[9] | J.P. Rowe, J.W. Freeman, Final report to National Aeronautics and Space Ad-ministration: Effect of overheating on crept-rupture properties of M252 and Inconel700 alloys at 1500 and 1600, University of Michigan, Michigan, 1960. |
[10] | J.P. Rowe, J.W. Freeman, Final report to National Aeronautics and Space Ad-ministration: Relations between microstructure and creep-rupture properties of Nickel-base alloys as revealed by overtemperature exposures, University of Michigan, Michigan, 1961. |
[11] |
J. Cormier, X. Milhet, J. Mendez, Acta Mater. 55 (18) (2007) 6250-6259, doi: 10.1016/j.actamat.2007.07.048.
DOI URL |
[12] |
J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet, Phil. Mag. Lett. 90 (8) (2010) 611-620, doi: 10.1080/09500839.2010.489887.
DOI URL |
[13] | R. Giraud, J. Cormier, Z. Hervier, D. Bertheau, K. Harris, J. Wahl, X. Mil-het, J. Mendez, A. Organista, in: E.S. Huron, R.C. Reed, M.C. Hard, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman (Eds.), Superalloys 2012: Proceedings of the 12th International Symposium on Superalloys, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2012, pp. 265-274. |
[14] |
C. Schwalbe, J. Cormier, C. Jones, E. Galindo-Nava, C. Rae, Metall. Mater. Trans. A 49 (9) (2018) 3988-4002, doi: 10.1007/s11661-018-4764-3.
DOI URL |
[15] |
B. Viguier, F. Touratier, E. Andrieu, Philos. Mag. 91 (35) (2011) 4427-4446, doi: 10.1080/14786435.2011.609151.
DOI URL |
[16] |
A. Raffaitin, D. Monceau, F. Crabos, E. Andrieu, Scr. Mater. 56 (4) (2007) 277-280, doi: 10.1016/j.scriptamat.2006.10.026.
DOI URL |
[17] |
X. Guo, W. Zheng, W. An, S. Antonov, L. Li, J. Cormier, Q. Feng, Materialia 14 (2020) 100913, doi: 10.1016/j.mtla.2020.100913.
DOI URL |
[18] |
X.F. Yuan, W.R. An, Y.W. Ju, S. Antonov, Z.N. Bi, W. Li, J.T. Wu, Mater. Charact. 158 (2019) 109946, doi: 10.1016/j.matchar.2019.109946.
DOI URL |
[19] |
S. Antonov, W.R. An, S. Utada, X.T. Guo, C. Schwalbe, W.W. Zheng, C.M.F. Rae, J. Cormier, Q. Feng, in: S. Tin, M. Hardy, J. Clews, J. Cormier, Q. Feng, J. Marcin, C. O’Brien, A. Suziki (Eds.), Superalloys 2020: Proceedings of the 14th Intenational Symposium of Superalloys Springer International, Springer International Publishing, Cham, Switzerland, 2020, pp. 228-239, doi: 10.1007/978-3-030-51834-9_22.
DOI |
[20] | R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge Univer-sity Press, London, 2006. |
[21] |
F.I. Versnyder, M.E. Shank, Mater. Sci. Eng. 6 (4) (1970) 213-247, doi: 10.1016/0025-5416(70)90050-9.
DOI URL |
[22] | L.M. Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, F. Mauget, G. Cail-letaud, L. Marcin, in: M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V.t Seetharaman, S. Tin (Eds.), Superalloys 2016: Proceedings of the 13th Inte-national Symposium of Superalloys, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2016, pp. 745-756. |
[23] |
S.G. Tian, N. Tian, H.C. Yu, X.L. Meng, Y. Li, Mater. Sci. Eng. A 615 (2014) 469-480, doi: 10.1016/j.msea.2014.07.103.
DOI URL |
[24] |
L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, H.T. Zhu, Mater. Sci. Eng. A 397 (1-2) (2005) 297-304, doi: 10.1016/j.msea.2005.02.038.
DOI URL |
[25] | Y.L. Cai, Y.R. Zheng, Metallographic Research of Superalloys, National Defense Industry Press, Beijing, 1986. |
[26] |
Y.D. Chen, W.W. Zheng, Y.R. Zheng, Q. Feng, J. Chin., Rare Metals 42 (10) (2018) 10.13373/j.cnki.cjrm.xy17090026.
DOI |
[27] | Y.D. Chen, Assessment of Normal Service-Induced Damage in High Pressure Turbine Blades Made of Directionally-Solidified Superalloy DZ125, University of Science and Technology of Beijing, Beijing, 2017. |
[28] |
F. Torster, G. Baumeister, J. Albrecht, G. Lütjering, D. Helm, M.A. Daeubler, Mater. Sci. Eng. A 234-236 (1997) 189-192, doi: 10.1016/S0921-5093(97)00161-5.
DOI URL |
[29] |
X. Yan, K. Zhang, Y. Deng, R. Sun, L. Lin, X. Zhang, Propuls. Power Res. 3 (3) (2014) 143-150, doi: 10.1016/j.jppr.2014.07.004.
DOI URL |
[30] | J. Cormier, X. Milhet, F. Vogel, J. Mendez, in: R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron (Eds.), Superalloys 2008: Proceedings of the 11th Intenational Symposium of Superalloys, John Wiley & Sons, Inc. Hobo-ken, NJ, USA, 2008, pp. 941-949. |
[31] |
J.B. le Graverend, L. Dirand, A. Jacques, J. Cormier, O. Ferry, T. Schenk, F. Gallerneau, S. Kruch, J. Mendez, Metall. Mater. Trans. A 43 (11) (2012) 3946-3951, doi: 10.1007/s11661-012-1343-x.
DOI URL |
[32] |
J.B. le Graverend, A. Jacques, J. Cormier, O. Ferry, T. Schenk, J. Mendez, Acta. Mater. 84 (0) (2015) 65-79, doi: 10.1016/j.actamat.2014.10.036.
DOI URL |
[33] |
T.M. Pollock, A.S. Argon, Acta Metall. Mater. 42 (6) (1994) 1859-1874, doi: 10.1016/0956-7151(94)90011-6.
DOI URL |
[34] |
N. Matan, D. Cox, C. Rae, R. Reed, Acta Mater. 47 (7) (1999) 2031-2045, doi: 10.1016/S1359-6454(99)00093-2.
DOI URL |
[35] |
T.M. Pollock, S. Tin, J. Propul. Power 22 (2) (2006) 361-374, doi: 10.2514/1.18239.
DOI URL |
[36] |
J. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki, Metall. Mater. Trans. A 33 (12) (2002) 3741-3746, doi: 10.1007/s11661-002-0246-7.
DOI URL |
[37] |
J.X. Zhang, T. Murakumo, Y. Koizumi, H. Harada, J. Mater. Sci. 38 (24) (2003) 4883-4888, doi: 10.1023/B:JMSC.0000004409.70156.6a.
DOI URL |
[38] |
J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Scr. Mater. 48 (3) (2003) 287-293, doi: 10.1016/S1359-6462(02)00379-2.
DOI URL |
[39] |
J.X. Zhang, J. Wang, H. Harada, Y. Koizumi, Acta Mater. 53 (17) (2005) 4623-4633, doi: 10.1016/j.actamat.2005.06.013.
DOI URL |
[40] |
A. Epishin, T. Link, Philos. Mag. 84 (19) (2004) 1979-2000, doi: 10.1080/14786430410001663240.
DOI URL |
[41] |
J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, Acta Mater. 51 (17) (2003) 5073-5081, doi: 10.1016/S1359-6454(03)00355-0.
DOI URL |
[42] |
S. Antonov, Y. Zheng, J.M. Sosa, H.L. Fraser, J. Cormier, P. Kontis, B. Gault, Scr. Mater. 186 (2020) 287-292, doi: 10.1016/j.scriptamat.2020.05.004.
DOI URL |
[43] |
PP. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, B. Gault, Scr.Mater. 145 (2018) 76-80, doi: 10.1016/j.scriptamat.2017.10.005.
DOI |
[44] |
F.R. Nabarro, Metall. Mater. Trans. A 27 (3) (1996) 513-530, doi: 10.1007/BF02648942.
DOI URL |
[45] |
J.B. le Graverend, J. Cormier, M. Jouiad, F. Gallerneau, P. Paulmier, F. Hamon, Mater. Sci. Eng. A 527 (20) (2010) 5295-5302, doi: 10.1016/j.msea.2010.04.097.
DOI URL |
[46] | Q.Y. Huang, H.K. Li, Superalloy, Metallurgical Industry Press, Beijing, 2000. |
[47] | J.T. Guo, Materials Science and Engineering for Superalloys (I), Science Press, Beijing, 2008. |
[48] | J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, T. Kobayashi, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra (Eds.), Superalloys 2004: Proceedings of the 10th Intenational Symposium of Superalloys, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2004, pp. 189-195. |
[49] | J.S. Zhang, High Temperature Deformation and Fracture of Materials, Beijing, Science Press, Beijing, 2007. |
[50] |
X.F. Yuan, J.T. Wu, J.T. Li, W. Li, J.C. Zhao, P. Yan, Mater. Sci. Eng. A 743 (2019) 40-56, doi: 10.1016/j.msea.2018.11.027.
DOI URL |
[51] |
Q.Y. Li, S.G. Tian, H.C. Yu, N. Tian, Y. Su, Y. Li, Mater. Sci. Eng. A 633 (2015) 20-27, doi: 10.1016/j.msea.2015.02.056.
DOI URL |
[52] |
A. Ibanez, V. Srinivasan, A. Saxena, Fatigue Fract. Eng. Mater. Struct. 29 (12) (2006) 1010-1020, doi: 10.1111/j.1460-2695.2006.01066.x.
DOI URL |
[53] |
L.M. Suave, A.S. Muñoz, A. Gaubert, G. Benoit, L. Marcin, P. Kontis, P. Vil-lechaise, J. Cormier, Metall. Mater. Trans. A 49 (9) (2018) 4012-4028, doi: 10.1007/s11661-018-4708-y.
DOI URL |
[54] |
P. Kontis, Z. Li, M. Segersäll, J.J. Moverare, R.C. Reed, D. Raabe, B. Gault, Metall. Mater. Trans. A 49 (9) (2018) 4236-4245, doi: 10.1007/s11661-018-4709-x.
DOI URL |
[55] |
L.R. Liu, T. Jin, N.R. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu, Mater. Sci. Eng. A 385 (1-2) (2004) 105-112, doi: 10.1016/j.msea.2004.06.003.
DOI URL |
[56] |
S.L. He, Y.S. Zhao, F. Lu, J. Zhang, L.F. Li, Q. Feng, Acta Metall. Sin. 56 (9) (2020), doi: 10.11900/0412.1961.2020.00020.
DOI |
[57] |
Y.S. Zhao, J. Zhang, F.Y. Song, M. Zhang, Y.S. Luo, H. Zhao, D.Z. Tang, Prog. Natl. Sci. Mater. Int. 30 (3) (2020) 371-381, doi: 10.1016/j.pnsc.2020.05.003.
DOI URL |
[58] |
Y.S. Zhao, J. Zhang, Y.S. Luo, J. Li, D.Z. Tang, Mater. Sci. Eng. A 672 (2016) 143-152, doi: 10.1016/j.pnsc.2020.05.003.
DOI URL |
[59] |
P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 491 (1-2) (2008) 159-163, doi: 10.1016/j.msea.2008.02.019.
DOI URL |
[60] | Z.H. Zhou, B.D. Zhu, Mater. Eng. (02) (1995) 45-47. |
[61] | Academic Committee of the Superalloys (CSM), China Superalloys Handbook Standards Press of China, Beijing, 2012. |
[1] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[2] | Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 76-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||