J. Mater. Sci. Technol. ›› 2022, Vol. 104: 285-291.DOI: 10.1016/j.jmst.2021.06.072
• Research Article • Previous Articles
Seungmi Kwaka, Jaehwang Kimb,*(), Hongsheng Dinga,*(
), Xuesong Xua, Ruirun Chena, Jingjie Guoa, Hengzhi Fua
Received:
2021-03-22
Revised:
2021-06-03
Accepted:
2021-06-11
Published:
2022-03-30
Online:
2021-09-12
Contact:
Jaehwang Kim,Hongsheng Ding
About author:
dinghsh@hit.edu.cn (H. Ding).Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property[J]. J. Mater. Sci. Technol., 2022, 104: 285-291.
Fig. 1. Macrostructures of cold crucible directionally solidified ingots under 50 kW power and different growth rates: (a) 0.6 mm/min, (b) 0.8 mm/min, (c) 1.0 mm/min, (d) 1.2 mm/min [19]; the transmission electron microscopy micrograph shows α2/γ lamellae at different growth rates of (e) 0.2 mm/min, (f) 0.6 mm/min, (g) 1.0 mm/min and (h) 1.2 mm/min, respectively [9].
Fig. 3. Predictive values of the multiple linear regression machine learning models: (a) tensile strength, (b) elongation, (c) nanoindentation hardness, and (d) interlamellar space dataset.
Fig. 4. Predictive values of the multiple linear regression machine learning models on the tensile strength dataset: (a) TS (tensile strength) and (b) TSEL (tensile strength + elongation) added elongation value as an input variable.
Fig. 5. Predictive values of the multiple linear regression machine learning models on the tensile strength dataset: (a) NH (nanoindentation hardness value) and (b) NHLS (nanoindentation hardness value + interlamellar space value) added interlamellar space value as an input variable.
Fig. 6. Predictive values of the multiple linear regression machine learning models on the tensile strength dataset: (a) evaluation R2 value and four separate groups: (b) group A, (c) group B, (d) group C, and (e) group D.
Sample no. | Ti | Al | V | Nb | Cr | Si | W | B | Y | C | Power(kW) | Pulling velocity (μm/s) | Prediction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | *Over |
8 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Over |
4 | 50 | 46 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 16.67 | **Under |
16 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 21.67 | Over |
31 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Over |
20 | 51 | 45 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 16.67 | Over |
33 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 48 | 8.33 | Over |
6 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Under |
13 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 21.67 | Under |
Table 1 Description of input materials values and prediction of Group A.
Sample no. | Ti | Al | V | Nb | Cr | Si | W | B | Y | C | Power(kW) | Pulling velocity (μm/s) | Prediction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | *Over |
8 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Over |
4 | 50 | 46 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 16.67 | **Under |
16 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 21.67 | Over |
31 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Over |
20 | 51 | 45 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 16.67 | Over |
33 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 48 | 8.33 | Over |
6 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 8.33 | Under |
13 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 21.67 | Under |
Sample no. | Ti | Al | V | Nb | Cr | Si | W | B | Y | C | Power (kW) | Pulling velocity (μm/s) | Prediction | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 53 | 46 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 50 | 25 | *Under | |
22 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 40 | 8.33 | **Over | |
18 | 51 | 45 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 3.33 | Under | |
1 | 53 | 46 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 50 | 8.33 | Over | |
23 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 8.33 | Under | |
5 | 50 | 46 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 25 | Under | |
9 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 11.67 | Under | |
24 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 8.33 | Under | |
37 | 48.8 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 16.67 | Over |
Table 2 Description of input materials values and prediction of Group D.
Sample no. | Ti | Al | V | Nb | Cr | Si | W | B | Y | C | Power (kW) | Pulling velocity (μm/s) | Prediction | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 53 | 46 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 50 | 25 | *Under | |
22 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 40 | 8.33 | **Over | |
18 | 51 | 45 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 3.33 | Under | |
1 | 53 | 46 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 50 | 8.33 | Over | |
23 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 8.33 | Under | |
5 | 50 | 46 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 50 | 25 | Under | |
9 | 47 | 44 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 11.67 | Under | |
24 | 48.75 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 8.33 | Under | |
37 | 48.8 | 44 | 2 | 6 | 1 | 0 | 0 | 0.1 | 0.15 | 0 | 45 | 16.67 | Over |
[1] |
G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Nat. Mater. 15 (2016) 876-881.
DOI URL |
[2] |
S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Acta Mater. 148 (2018) 300-310.
DOI URL |
[3] |
W. Kan, B. Chen, C. Jin, H. Peng, J. Lin, Mater. Des. 160 (2018) 611-623.
DOI URL |
[4] | L.S. Aiken, S.G. West, S.C. Pitts, A.N. Baraldi, I.C. Wurpts, Mult. Linear Regres. (2013). |
[5] |
Y. Su, D. Zhang, F. Kong, Y. Chen, Mater. Sci. Eng. A 563 (2013) 46-52.
DOI URL |
[6] |
T. Tetsui, S. Ono, Intermetallics 7 (1999) 689-697.
DOI URL |
[7] |
D. Peter, G.B. Viswanathan, A. Dlouhy, G. Eggeler, Acta Mater. 58 (2010) 6431-6443.
DOI URL |
[8] |
S. Dong, R. Chen, J. Guo, H. Ding, Y. Su, H. Fu, Mater. Sci. Eng. A 614 (2014) 67-74.
DOI URL |
[9] |
H. Ding, Y. Wang, R. Chen, J. Guo, H. Fu, Mater. Des. 86 (2015) 670-678.
DOI URL |
[10] |
S. Dong, R. Chen, J. Guo, H. Ding, Y. Su, H. Fu, Mater. Des. 67 (2015) 390-397.
DOI URL |
[11] |
R. Zhang, D.J. Wang, S.Q. Liu, H.S. Ding, S.J. Yuan, Mater. Charact. 144 (2018) 424-430.
DOI URL |
[12] |
S. Liu, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Nanoscale 10 (2018) 11365-11374.
DOI URL |
[13] |
H. Ding, G. Nie, R. Chen, J. Guo, H. Fu, Intermetallics 31 (2012) 264-273.
DOI URL |
[14] |
J. Yang, R. Chen, H. Ding, J. Guo, J. Han, H.Z. Fu, Int. J. Heat Mass Transf. 63 (2013) 216-223.
DOI URL |
[15] | Y. Yan, H. Ding, Y. Kang, J. Song Mater. Des. 55 (2014) 450-455. |
[16] |
R. Chen, S. Dong, J. Guo, H. Ding, Y. Su, H. Fu, Mater. Des. 89 (2016) 492-506.
DOI URL |
[17] |
R. Chen, S. Dong, J. Guo, H. Ding, Y. Su, H. Fu, J. Alloy. Compd. 648 (2015) 667-675.
DOI URL |
[18] | Q. Wang, R. Chen, X. Gong, J. Guo, Y. Su, H. Ding, H. Fu, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 49 (2018) 4555-4564. |
[19] |
Q. Wang, H. Ding, H. Zhang, S. Liu, R. Chen, J. Guo, H. Fu, Mater. Des. 125 (2017) 146-157.
DOI URL |
[20] |
M.X. Li, S.F. Zhao, Z. Lu, A. Hirata, P. Wen, H.Y. Bai, M.W. Chen, J. Schroers, Y.H. Liu, W.H. Wang, Nature 569 (2019) 99-103.
DOI URL |
[21] |
Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, T. Shen, J. Mater. Sci. Technol. 57 (2020) 113-122.
DOI URL |
[22] |
J. Paulo Davim, C. Oliveira, A. Cardoso, Mater. Des. 29 (2008) 554-557.
DOI URL |
[23] |
J.J. De Pablo, B. Jones, C.L. Kovacs, V. Ozolins, A.P. Ramirez Curr. Opin. Solid State Mater. Sci. 18 (2014) 99-117.
DOI URL |
[24] |
M.L. Green, C.L. Choi, J.R. Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Bar-ron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, A.G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. Van Duren, A. Zakutayev, Appl. Phys. Rev. 4 (2017) 011105.
DOI URL |
[25] | S. Ding, Y. Liu, Y. Li, Z. Liu, S. Sohn, F.J. Walker, J. Schroers Nat. Mater. 13 (2014) 494-500. |
[26] |
Y. Li, K.E. Jensen, Y. Liu, J. Liu, P. Gong, B.E. Scanley, C.C. Broadbridge, J. Schroers, ACS Comb. Sci. 18 (2016) 630-637.
DOI URL |
[27] |
J.F. Pei, C.Z. Cai, Y.M. Zhu, J. Theor. Comput. Chem. 12 (2013) 1350002.
DOI URL |
[28] |
C. Xi, L. Sztandera, H.M. Cartwright, Int. J. Intell. Syst. 23 (2008) 22-32.
DOI URL |
[29] |
D.J. Scott, P.V. Coveney, J.A. Kilner, J.C.H. Rossiny, N.M.N. Alford, J. Eur. Ceram. Soc. 27 (2007) 4425-4435.
DOI URL |
[30] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[31] |
J. Li, Y. Zhang, X. Cao, Q. Zeng, Y. Zhuang, X. Qian, H. Chen, Commun. Mater. 1 (2020) 1-10.
DOI URL |
[32] |
M.F. Abbod, D.A. Linkens, Q. Zhu, M. Mahfouf, Mater. Sci. Eng. A 333 (2002) 397-408.
DOI URL |
[33] |
W. Yu, M.Q. Li, J. Luo, S. Su, C. Li, Mater. Des. 31 (2010) 3282-3288.
DOI URL |
[34] |
Y.F. Han, W.D. Zeng, Y. Shu, Y.G. Zhou, H.Q. Yu, Comput. Mater. Sci. 50 (2011) 1009-1015.
DOI URL |
[35] | Z. Guo, S. Malinov, W. Sha, Comput. Mater. Sci. 32 (2005) 1-12. |
[36] |
Y. Wang, Y. Tian, T. Kirk, O. Laris, J.H. Ross, R.D. Noebe, V. Keylin, R. Arróyave, Acta Mater. 194 (2020) 144-155.
DOI URL |
[37] |
S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758 (2019) 56-59.
DOI URL |
[38] |
Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, Y. Su, Acta Mater. 185 (2020) 528-539.
DOI URL |
[39] |
W. Huang, P. Martin, H.L. Zhuang, Acta Mater. 169 (2019) 225-236.
DOI URL |
[40] |
K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C.A.J. Fisher, H. Moriwake, I. Tanaka, Adv. Energy Mater. 3 (2013) 980-985.
DOI URL |
[41] |
G. Nie, H. Ding, R. Chen, J. Guo, H. Fu, Mater. Des. 39 (2012) 350-357.
DOI URL |
[42] |
H. Ding, G. Nie, Y. Wang, R. Chen, J. Guo, H. Fu, Key Eng. Mater. 551 (2013) 103-108.
DOI URL |
[43] | A. Tropsha, P. Gramatica, V.K. Gombar, The Importance of Being Earnest: Val-idation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models, Wiley, 2003. |
[44] |
M. Yamaguchi, H. Inui, K. Ito, Acta Mater. 48 (2000) 307-322.
DOI URL |
[1] | Mehmet Cagirici, Pan Wang, Fern Lan Ng, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J]. J. Mater. Sci. Technol., 2021, 94(0): 53-66. |
[2] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
[3] | Yunwei Gui, Lingxiao Ouyang, Yibei Xue, Quanan Li. Effect of thermo-mechanical processing parameters on the dynamic restoration mechanism in an Mg-4Y-2Nd-1Sm-0.5Zr alloy during hot compression [J]. J. Mater. Sci. Technol., 2021, 90(0): 205-224. |
[4] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[5] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[6] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[7] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[8] | Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38(0): 28-38. |
[9] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
[10] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[11] | Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration [J]. J. Mater. Sci. Technol., 2020, 44(0): 160-170. |
[12] | Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57(0): 113-122. |
[13] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[14] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[15] | Wenqiang Hu, Zhenying Huang, Qun Yu, Yuanbo Wang, Yidan Jiao, Cong Lei, Leping Cai, Hongxiang Zhai, Yang Zhou. Ti2AlC triggered in-situ ultrafine TiC/Inconel 718 composites: Microstructure and enhanced properties [J]. J. Mater. Sci. Technol., 2020, 51(0): 70-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||