J. Mater. Sci. Technol. ›› 2021, Vol. 90: 205-224.DOI: 10.1016/j.jmst.2021.02.036
• Research Article • Previous Articles Next Articles
Yunwei Guia,b,c, Lingxiao Ouyangc,*(), Yibei Xued, Quanan Lia,b,*(
)
Received:
2021-01-19
Revised:
2021-02-15
Accepted:
2021-02-23
Published:
2021-11-05
Online:
2021-11-05
Contact:
Lingxiao Ouyang,Quanan Li
About author:
qali@haust.edu.cn (Q. Li).Yunwei Gui, Lingxiao Ouyang, Yibei Xue, Quanan Li. Effect of thermo-mechanical processing parameters on the dynamic restoration mechanism in an Mg-4Y-2Nd-1Sm-0.5Zr alloy during hot compression[J]. J. Mater. Sci. Technol., 2021, 90: 205-224.
Fig. 1. (a) Schematic diagram of the experimental process, (b) schematic diagram of compression tests, (c) sampling methods in the present study, (d) SEM image of the as-cast sample, (e) SEM image of the sample after solution treatment.
Fig. 2. EBSD observations in the initial microstructure of the Mg-4Y-2Nd-1Sm-0.5Zr alloy after solution treatment. (a) Inverse polar figure (IPF) map, (b) Euler map, (c) grain boundary map, (d) the corresponding pole figures of {0002}, {10-10}, and {11-20}, (e) grain size distribution map of (a), (f) misorientation angle distribution map of (c).
Fig. 4. Compensation of the adiabatic heating effect: (a) extrapolation correction for each temperature at 5 s-1; (b) extrapolation correction for each temperature at 1 s-1; (c) extrapolation correction for each temperature at 0.1 s-1 and (d) an example of linear fitting of the measured points and extrapolation correction conducted at 5 s-1 and a true strain of 0.35.
Preset temperature (°C) | Measured temperature (°C) | Measured stress (MPa) | Extrapolation stress (MPa) | Stress difference (MPa) |
---|---|---|---|---|
350 | 399.16 | 201.01 | 249.74 | 48.73 |
400 | 443.68 | 171.26 | 202.74 | 31.48 |
450 | 477.80 | 141.78 | 162.24 | 20.46 |
500 | 524.54 | 109.80 | 126.98 | 17.18 |
Table 1 Adiabatic heating compensation at 5 s-1 and a true strain of 0.35.
Preset temperature (°C) | Measured temperature (°C) | Measured stress (MPa) | Extrapolation stress (MPa) | Stress difference (MPa) |
---|---|---|---|---|
350 | 399.16 | 201.01 | 249.74 | 48.73 |
400 | 443.68 | 171.26 | 202.74 | 31.48 |
450 | 477.80 | 141.78 | 162.24 | 20.46 |
500 | 524.54 | 109.80 | 126.98 | 17.18 |
Fig. 5. Calculation of material constants in constitutive equations, (a) slopes of∂ln$\dot \varepsilon$-∂lnσ for ${n_1}$; (b) slopes of∂ln$\dot \varepsilon$/∂σ for β; (c) slopes of ∂ln$\dot \varepsilon$/∂ln[sh(ασ)] for n; (d) slopes∂ln[sh(ασ)]-1000/T of for calculating Q.
Fig. 7. Processing maps assembled by the efficiency of power dissipation (η) contours with flow instability (ξ) color background, for a true strain of (a) 0.4 and (b) 0.8.
Fig. 9. (a)-(d) The misorientation angle distribution of all conditions at a true strain of 0.8; (e) The average misorientation angles of all conditions in (a)-(d).
Fig. 14. Relationship of (a) θ - σ and (b) $- \left( {\frac{{\partial \theta }}{{\partial \sigma }}} \right)$-σ and (c) XDRX - ɛ at the temperature of 500 °C and strain rate of 0.01 s-1.
Fig. 15. (a-i) IPF maps of 500 °C / 0.01 s-1 ((a) strain 0.2; (b) strain 0.4; (c) strain 0.8), 500 °C / 5 s-1 ((d) strain 0.2; (e) strain 0.4; (f) strain 0.8), and 350 °C / 0.01 s-1 ((g) strain 0.2; (h) strain 0.4; (i) strain 0.8) and (j, k) orientation gradient measured by line a-b and c-d in (g) and (h); (l, m) orientation gradient measured by line e-f and g-h in (b) and (d).
(s-1) || T ( °C) | 350 | 400 | 450 | 500 |
---|---|---|---|---|
5 | N/A | N/A | 270.834; 8.0673 | 182.700; 5.9880 |
1 | N/A | N/A | 274.772; 7.3771 | 176.400; 5.0493 |
0.1 | N/A | 373.166 7.9709 | 268.490; 5.2391 | 224.730; 3.9663 |
0.01 | 282.047; 6.2726 | 244.455; 4.5856 | 205.974; 3.8238 | 205.912; 3.5356 |
Table 3 The apparent activation energy (Q, upper values in the cell, kJ/mol) and stress component (n1, values below) for various T and $\dot \varepsilon$ at a true strain of 0.8.
(s-1) || T ( °C) | 350 | 400 | 450 | 500 |
---|---|---|---|---|
5 | N/A | N/A | 270.834; 8.0673 | 182.700; 5.9880 |
1 | N/A | N/A | 274.772; 7.3771 | 176.400; 5.0493 |
0.1 | N/A | 373.166 7.9709 | 268.490; 5.2391 | 224.730; 3.9663 |
0.01 | 282.047; 6.2726 | 244.455; 4.5856 | 205.974; 3.8238 | 205.912; 3.5356 |
(s-1) || T ( °C) | 350 | 400 | 450 | 500 |
---|---|---|---|---|
5 | N/A | N/A | 174.527; 6.9973 | 141.225; 5.5621 |
1 | N/A | N/A | 217.581; 6.8725 | 186.825; 5.6295 |
0.1 | N/A | 293.629; 9.3112 | 241.494; 5.1749 | 200.093; 4.2862 |
0.01 | 402.584; 8.6845 | 252.712; 4.5428 | 184.329; 3.1614 | 159.203; 2.9106 |
Table 2 The apparent activation energy (Q, upper values in the cell, kJ/mol) and stress component (n1, values below) for various T and $\dot \varepsilon$ at a true strain of 0.4.
(s-1) || T ( °C) | 350 | 400 | 450 | 500 |
---|---|---|---|---|
5 | N/A | N/A | 174.527; 6.9973 | 141.225; 5.5621 |
1 | N/A | N/A | 217.581; 6.8725 | 186.825; 5.6295 |
0.1 | N/A | 293.629; 9.3112 | 241.494; 5.1749 | 200.093; 4.2862 |
0.01 | 402.584; 8.6845 | 252.712; 4.5428 | 184.329; 3.1614 | 159.203; 2.9106 |
Fig. 17. Microstructural observations at 350 °C / 0.01 s-1 /0.2 and 350 °C / 0.01 s-1 / 0.4: (a) IPF map for 0.2 and (b) 0.4; (c) typical grain and twin A and (d) those of B; (e) the corresponding polar figures of (c); (f) the corresponding polar figures of (d).
[1] |
J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H. El Kadiri, S.R. Agnew, Int. J. Plast. 81 (2016) 123-151.
DOI URL |
[2] | W. Li, L. Wang, B. Zhou, C. Liu, X. Zeng, J. Mater. Sci. Technol. 35 (2019) 2200-2206. |
[3] |
Q. Huang, Y. Liu, A. Zhang, H. Jiang, H. Pan, X. Feng, C. Yang, T. Luo, Y. Li, Y. Yang, J. Mater. Sci. Technol. 38 (2020) 39-46.
DOI URL |
[4] |
M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic, Acta Mater 131 (2017) 221-232.
DOI URL |
[5] |
F. Wang, M. Feng, Y. Jiang, J. Dong, Z. Zhang, J. Mater. Sci. Technol. 39 (2020) 74-81.
DOI URL |
[6] |
H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, W.J. Ding, Int. J. Plast. 84 (2016) 255-276.
DOI URL |
[7] |
D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Acta Mater 135 (2017) 14-24.
DOI URL |
[8] |
C.Q. Liu, C. He, H.W. Chen, J.F. Nie, J. Mater. Sci. Technol. 45 (2020) 230-240.
DOI |
[9] |
W. Gong, K. Aizawa, S. Harjo, R. Zheng, T. Kawasaki, J. Abe, T. Kamiyama, N. Tsuji, Int. J. Plast. 111 (2018) 288-306.
DOI URL |
[10] |
B. Wang, D. Xu, L. Sheng, E. Han, J. Sun, J. Mater. Sci. Technol. 35 (2019) 2423-2429.
DOI URL |
[11] |
W.G. Feather, S. Ghorbanpour, D.J. Savage, M. Ardeljan, M. Jahedi, B.A. McWilliams, N. Gupta, C. Xiang, S.C. Vogel, M. Knezevic, Int. J. Plast. 120 (2019) 180-204.
DOI URL |
[12] |
Y. Gui, Y. Cui, H. Bian, Q. Li, L. Ouyang, A. Chiba, J. Mater. Sci. Technol. 80 (2021) 279-296.
DOI URL |
[13] |
C. Lou, X. Zhang, Y. Ren, Mater. Charact. 107 (2015) 249-254.
DOI URL |
[14] |
Y. Gui, Y. Cui, H. Bian, Q. Li, L. Ouyang, A. Chiba, J. Alloys Compd. 856 (2021) 158201.
DOI URL |
[15] |
I. Basu, T. Al-Samman, Acta Mater 96 (2015) 111-132.
DOI URL |
[16] |
B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi, J. Mater. Sci. Technol. 60 (2021) 44-55.
DOI |
[17] |
A. Imandoust, C.D. Barrett, H. El Kadiri, Mater. Sci. Eng. A 720 (2018) 225-230.
DOI URL |
[18] |
B. Wang, J. Shi, P. Ye, L. Deng, C. Wang, J. Chen, X. Yang, Q. Li, Mater. Sci. Eng. A 731 (2018) 71-79.
DOI URL |
[19] | C. Zheng, Z. Xu, D. He, K. Guan, B. Ai, J.M. Garcia-Loygorri, in: 2019 IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet. APSURSI 2019 - Proc., 2019. |
[20] | S.Y. Chang, S.W. Lee, K.M. Kang, S. Kamado, Y. Kojima, Mater. Trans. (2004). |
[21] |
X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245-247.
DOI |
[22] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Hi- gashi, Acta Mater 51 (2003) 2055-2065.
DOI URL |
[23] |
A. Chapuis, J.H. Driver, Acta Mater 59 (2011) 1986-1994.
DOI URL |
[24] |
Y. Gui, L. Ouyang, Y. Cui, H. Bian, Q. Li, A. Chiba, J. Magnes. Alloys 9 (2021) 456-466 https://doi.org/10.1016/ j.jma. 2020. 06.001.
DOI URL |
[25] |
D. Samantaray, S. Mandal, A.K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 5204-5211.
DOI URL |
[26] |
Z. Jin, K. Yin, K. Yan, D. Wu, J. Liu, Z. Cui, J. Mater. Sci. Technol. 33 (2017) 1255-1262.
DOI URL |
[27] |
H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, X. Yang, Mater. Des. 80 (2015) 51-62.
DOI URL |
[28] |
B. Eghbali, Mater. Sci. Eng. A 527 (2010) 3402-3406.
DOI URL |
[29] |
Y. Sun, C. Zhang, H. Feng, S. Zhang, J. Han, W. Zhang, E. Zhao, H. Wang, Mater. Charact. 163 (2020) 110281.
DOI URL |
[30] |
J. Guo, M. Zhan, Y.Y. Wang, P.F. Gao, J. Alloys Compd. 767 (2018) 34-45.
DOI URL |
[31] |
X. Tang, B. Wang, Y. Huo, W. Ma, J. Zhou, H. Ji, X. Fu, Mater. Sci. Eng. A 662 (2016) 54-64.
DOI URL |
[32] |
L. Ouyang, R. Luo, Y. Gui, Y. Cao, L. Chen, Y. Cui, H. Bian, K. Aoyagi, K. Ya- manaka, A. Chiba, Mater. Sci. Eng. A 788 (2020) 139638.
DOI URL |
[33] | Y. Li, C. Akihiko, in: Application of Smart Hot Forging Technique in Producing Biomedical Co-Cr-Mo Artificial Implants, Springer, Berlin, Heidelberg, 2015, pp. 57-83. |
[34] |
Y. Gui, Q. Li, J. Chen, Mater. Res. Express 5 (2018) 076515.
DOI URL |
[35] |
K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
[36] |
R. Luo, Y. Yang, H. Bian, L. Chen, L. Ouyang, C.T. Peng, P. Gao, G. Xu, X. Cheng, Steel Res. Int. 90 (2019) 1900022.
DOI URL |
[37] | L. Slaz, T. Sakai, J.J. Jonas, Met. Sci. 17 (1983) 606-616. |
[38] |
J.Y. Zhang, B. Xu, N. ul H. Tariq, M.Y. Sun, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 40 (2020) 54-63.
DOI |
[39] |
F.A. Slooff, J. Zhou, J. Duszczyk, L. Katgerman, Scr. Mater. 57 (2007) 759-762.
DOI URL |
[40] |
C.M. Sellars, W.J. McTegart, Acta Metall 14 (1966) 1136-1138.
DOI URL |
[41] |
L. Zhou, C. Cui, Q.Z. Wang, C. Li, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 34 (2018) 1730-1738.
DOI |
[42] |
S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Mater. Des. 113 (2017) 27-36.
DOI URL |
[43] |
C. Zener, J.H. Hollomon, J. Appl. Phys. 15 (1944) 22-32.
DOI URL |
[44] |
N. Srinivasan, Y.V.R.K. Prasad, P. Rama Rao, Mater. Sci. Eng. A 476 (2008) 146-156.
DOI URL |
[45] | I.G. Crossland, R.B. Jones, Met. Sci. J. 6 (1972) 162-166. |
[46] | Q. Meng, C. Bai, D. Xu, J. Mater. Sci. Technol. 34 (2018) 679-688. |
[47] |
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D. R. Barker, Metall. Trans. A 15 (1984) 1883-1892.
DOI URL |
[48] |
T.A.V. Prasad, T. Srinivas, M. Rafi, D.C. Reddy, Biochem. Int. 22 (1990) 435-440.
PMID |
[49] | Y.V.R.K. PRASAD, Indian J. Technol. 28 (1990) 435-451. |
[50] |
C. Fressengeas, A. Molinari, J. Mech. Phys. Solids 35 (1987) 185-211.
DOI URL |
[51] |
G. zheng Quan, Y. Wang, C. tang Yu, J. Zhou, Mater. Sci. Eng. A 564 (2013) 46-56.
DOI URL |
[52] |
S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloys Compd. 681 (2016) 28-42.
DOI URL |
[53] |
Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 71-85.
DOI URL |
[54] |
H. McQueen, N. Ryan, Mater. Sci. Eng. A 322 (2002) 43-63.
DOI URL |
[55] |
T. Al-Samman, X. Li, S.G. Chowdhury, Mater. Sci. Eng. A 527 (2010) 3450-3463.
DOI URL |
[56] | J.H. Lee, J.U. Lee, S.H. Kim, S.W. Song, C.S. Lee, S.H. Park, J. Mater. Sci. Technol. 34 (2018) 1747-1755. |
[57] |
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater 59 (2011) 429-439.
DOI URL |
[58] |
M. Bugnet, A. Kula, M. Niewczas, G.A. Botton, Acta Mater 79 (2014) 66-73.
DOI URL |
[59] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[60] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[61] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[62] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy. 7 (2019) 58-71.
DOI URL |
[63] |
Q. Liao, Y. Jiang, Q. Le, X. Chen, C. Cheng, K. Hu, D. Li, J. Mater. Sci. Technol. 61 (2021) 1-15.
DOI URL |
[64] |
J.W. Cahn, Acta Metall 4 (1956) 449-459.
DOI URL |
[65] |
R.A. Vandermeer, D. Juul Jensen, Interface Sci 6 (1998) 95-104.
DOI URL |
[66] | Y. Zhu, Y. Cao, C. Liu, R. Luo, N. Li, G. Shu, G. Huang, Q. Liu, Mater. Today Commun. 25 (2020) 101329. |
[67] |
H. Miura, T. Sakai, H. Nogawa, X.Y. Yang, Y. Watanabe, S. Miura, Mater. Sci. Forum 4 88-4 89 (2005) 193-196.
DOI URL |
[68] |
A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater 49 (2001) 1199-1207.
DOI URL |
[69] |
S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall 30 (1982) 1909-1919.
DOI URL |
[70] | F.J. Humphreys, M. Hatherly, in: Recrystallization and Related Annealing Phe- nomena, 2nd edn, Elsevier, Oxford, 2004, p. 178. |
[71] |
H. Watanabe, T. Mukai, M. Mabuchi, K. Higashi, Acta Mater 49 (2001) 2027-2037.
DOI URL |
[72] |
I. Kartika, H. Matsumoto, A. Chiba, Metall. Mater. Trans. A 40 (2009) 1457-1468.
DOI URL |
[73] |
H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 407 (2005) 53-61.
DOI URL |
[74] |
M.H. Yoo, Metall. Trans. A 12 (1981) 409-418.
DOI URL |
[75] |
X. Liu, B.W. Zhu, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 733 (2018) 98-107.
DOI URL |
[76] |
Y. Wu, M. Zhang, X. Xie, F. Lin, S. Zhao, Mater. Sci. Eng. A 662 (2016) 283-295.
DOI URL |
[77] |
S. Mandal, A.K. Bhaduri, V.Subramanya Sarma, Metall. Mater. Trans. A 42 (2011) 1062-1072.
DOI URL |
[1] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[2] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[3] | H. Zhou, H.Y. Ning, X.L. Ma, D.D. Yin, L.R. Xiao, X.C. Sha, Y.D. Yu, Q.D. Wang, Y.S. Li. Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting [J]. J. Mater. Sci. Technol., 2018, 34(7): 1067-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||