J. Mater. Sci. Technol. ›› 2022, Vol. 104: 244-268.DOI: 10.1016/j.jmst.2021.06.065
• Invited Review • Previous Articles Next Articles
Bin Lia, Fenglong Wanga, Kejun Wangb, Jing Qiaoa, Dongmei Xuc, Yunfei Yanga, Xue Zhanga, Longfei Lyua, Wei Liuc, Jiurong Liua,*()
Received:
2021-05-18
Revised:
2021-06-18
Accepted:
2021-06-21
Published:
2022-03-30
Online:
2021-09-09
Contact:
Jiurong Liu
About author:
* E-mail address: jrliu@sdu.edu.cn (J. Liu).Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review[J]. J. Mater. Sci. Technol., 2022, 104: 244-268.
Fig. 1. Schematic of modification strategies of metal sulfides based MA materials. Reproduced with permission from Refs. [34,[39], [40], [41], [42], [43]].
Fig. 3. Schematic of synthesis methods of metal sulfides: (a) solvothermal approaches; (b) gas-solid reaction; (c) microwave-assisted synthesis; (d) ultrasonic spray methods; (e) high energy ball milling methods. Reproduced with permission from Refs. [66,73,38,79,80].
Method | Description | Advantages | Disadvantages |
---|---|---|---|
Solvothermal /hydrothermal approaches | In a closed system, a chemical reaction is carried out with water or other reagents as a solvent at a certain temperature and pressure. | Mild reaction conditions Low energy consumption | Low purity Polluting waste |
Gas-solid reaction | The precursors are vulcanized by sulfur-containing gases to obtain the corresponding metal sulfides. | Flexible operation Desirable crystallinity | High reaction temperature Large energy consumption |
Microwave-assisted synthesis | The vulcanization reaction process is accelerated by the polarization interaction between microwaves and materials during the microwave heating. | Achieving rapid and uniform volume heating | Narrow application range |
Ultrasonic spray | The precursors are ultrasonic nebulized and reacts rapidly in a vacuum and high temperature condition. | Rapid reaction High uniformity | Low output Large energy consumption Harsh reaction condition |
High-energy ball milling | The precursors are crushed into nanoparticles and induced into chemical reactions. | Low cost High output High uniformity | Low purity |
Table 1 Summary of synthetic methods of metal sulfides based materials.
Method | Description | Advantages | Disadvantages |
---|---|---|---|
Solvothermal /hydrothermal approaches | In a closed system, a chemical reaction is carried out with water or other reagents as a solvent at a certain temperature and pressure. | Mild reaction conditions Low energy consumption | Low purity Polluting waste |
Gas-solid reaction | The precursors are vulcanized by sulfur-containing gases to obtain the corresponding metal sulfides. | Flexible operation Desirable crystallinity | High reaction temperature Large energy consumption |
Microwave-assisted synthesis | The vulcanization reaction process is accelerated by the polarization interaction between microwaves and materials during the microwave heating. | Achieving rapid and uniform volume heating | Narrow application range |
Ultrasonic spray | The precursors are ultrasonic nebulized and reacts rapidly in a vacuum and high temperature condition. | Rapid reaction High uniformity | Low output Large energy consumption Harsh reaction condition |
High-energy ball milling | The precursors are crushed into nanoparticles and induced into chemical reactions. | Low cost High output High uniformity | Low purity |
Fig. 4. SEM images and particle size distributions of (a) R-Sb2S3, and (b) S-Sb2S3; (c) the permittivity of R-Sb2S3 and S-Sb2S3; (d) 3D RL values of R-Sb2S3; (e) the Cole-Cole plots of R-Sb2S3 and S-Sb2S3; (f) schematic diagram of charge density distribution. Reproduced with permission from Ref. [39].
Fig. 5. (a) Schematic of the exfoliation method of MoS2-NS; (b), (c) SEM images of MoS2-Bulk; (d), (e) SEM images of MoS2-NS; (f) permittivity of MoS2-Bulk/wax and MoS2-NS/wax with different loading contents; (g) RL of MoS2-Bulk/wax and MoS2-NS/wax with 60 wt% at different thicknesses; (h) MA mechanism diagram of MoS2-NS MA materials. Reproduced with permission from Ref. [40].
Fig. 6. (a) Schematic illustration of NixCo3-xS4 hollow nanosphere; TEM images of NixCo3-xS4 sample prepared at various times: (b, c) 3 h; (d, e) 5 h; (f, g) 8 h; (h, i) HR-TEM images of NixCo3-xS4 (x = 1.0); RL curves for NixCo3-xS4 products (j) x = 0, (k) x = 0.3, (l) x = 0.6, (m) x = 1.0. Reproduced with permission from Ref. [102].
Fig. 7. (a) Schematic synthetic route of the CMM absorber; SEM images of as obtained materials: (b, e) CFs; (c, f) CM, (d, g) CMM; (h) ε′, (i) ε′′, (j) dielectric loss tangent of CMM samples; (k) optimal RL value of the materials; (l) MA mechanisms of the CMM system. Reproduced with permission from Ref. [45].
Fig. 8. TEM images of (a) WS2, (b) rGO, (c) WS2-rGO; (d) ε′ and (e) ε″ of WS2 and WS2-RGO; RL profiles and 3D maps of (f) pristine WS2 and (g) WS2-rGO; (h) MA mechanisms of WS2-rGO heterostructure nanosheets. Reproduced with permission from Ref. [93].
Fig. 9. (a) Schematic synthetic route of Cu9S5/C; SEM images of the intermediate Cu/C composites (b, c) CSC1, (d,e) CSC2, (f, g) CSC3, and (h, i) pure C; (j) the permittivity and tanδE for CS, CSC1, CSC2, CSC3 and C; simulated electric field distribution in carbon skeleton (k1) and Cu9S5/C (k2), magnetic field distribution in carbon skeleton (k3) and Cu9S5/C (k4); (l) schematic diagram of the MA mechanism. Reproduced with permission from Ref. [116].
Fig. 10. (a) Illustration of the preparation of WS2/NiO hybrids; TEM images of (b) WS2, (c) NiO, and (d) WS2/NiO composites; (e) the permittivity of WS2/NiO composites; (f) RL curves of WS2/NiO/wax composites; (g) illustration of loss mechanisms for WS2/NiO composites. Reproduced with permission from Ref. [18].
Fig. 11. (a) Synthesis process of CuS/Ag2S composite; SEM images of (b) CuS, (c) CuS/Ag2S (30:1), (d) CuS/Ag2S (5:1), (e) CuS/Ag2S (2:1); (f, g) TEM images of CuS/Ag2S composite with Cu:Ag mole ratio of 5:1; (h) ε′, (i) ε″ and (j) tan δe for CuS and CuS/Ag2S composites; (k) schematic diagram of the MA mechanism. Reproduced with permission from Ref. [35].
Fig. 12. (a) TEM image of the MoS2/FeS2 composite; (b) off-axis electron holograms; (c) electric potential diagram; (d) charge density distribution; (e) local electric field distribution; (f) the profile of charge density and local electrical field. Reproduced with permission from Ref. [126].
Fig. 13. (a) Illustration of the preparation of PPy@MoS2 composite; (b, c) SEM of PPy@MoS2 composite; (d) the permittivity of the PPy, MoS2 and PPy@MoS2 composite; (e) MA mechanisms for PPy@MoS2. Reproduced with permission from Ref. [135].
Fig. 14. SEM images of (a) Fe2O3 micro-sheet, (b) Fe-500, (c) Fe-650, (d) Fe2O3@MoS2, (e) Fe@MoS2-500 and (f) Fe@MoS2-650; (g) XRD patterns of (1) Fe2O3 micro-sheets, (2) Fe-500, (3) Fe-650, (4) Fe@MoS2-500 and (5) Fe@MoS2-650; (h-k) electromagnetic parameters of samples; the RL of coin-like (l) Fe@MoS2-500 and (m) Fe@MoS2-650. Reproduced with permission from Ref. [143].
Fig. 15. (a) Synthesis process of FeCo@MoS2 nanoflowers; SEM images of (b, d) S1, (c, e) S2, (f, h) S3, and (g, i) S4; (j) electromagnetic parameters measured from S1 to S4; (k) schematic illustration of MA mechanisms for the FeCo@MoS2. Reproduced with permission from Ref. [66].
Fig. 16. (a) Synthesis process for the Fe3O4/Fe3S4 composites; SEM images of (b) S1, (c) S2, (d) S3, (e) S4; (f) electromagnetic parameters of samples; RL values for S3 with loading content of 60 wt% at different thickness; (g) 3D plots, (h) 2D plots and (i) the minimum RL value at the matching thickness; (j) schematic illustration of MA mechanisms for the Fe3O4/Fe3S4 composites. Reproduced with permission from Ref. [42].
Fig. 17. (a) Synthesis process of CoFe2O4@1T/2H-MoS2 composites; SEM image of (b) pure CoFe2O4, (c) pure 1T/2H-MoS2, (d) a single nest-like pure 1T/2H-MoS2 particle, (e) sample S1, (f) sample S2, and (g) sample S3; (h) electromagnetic parameter of samples; (i) 3D contour maps of RL for S2; (j) EAB of S2; (k) schematic illustration of MA mechanism of CoFe2O4@1T/2H-MoS2 composites. Reproduced with permission from Ref. [150].
Classify | Sample | Loading content (wt%) | RLmin | EAB | Refs. | ||
---|---|---|---|---|---|---|---|
Value (dB) | Thickness (mm) | Value (GHz) | Thickness (mm) | ||||
1D metal sulfides MA materials | CoS nanorods | 5 | -43.0 | 4.3 | - | - | [ |
Sb2S3 nanorods | 75 | -65.9 | 3.8 | 9.5 | 3.8 | [ | |
porous NixSy | 30 | -35.6 | 2.7 | 14.5 | 2.0-5.0 | [ | |
NixCo3-xS4 nanoprisms | 50 | -13.5 | 2.0 | 5.6 | 2.0 | [ | |
Co9S8 nanotubes | 20 | -46.7 | 2.8 | 4.0 | 2.8 | [ | |
2D metal sulfides MA materials | WS2 nanosheets | 40 | -15.5 | 5.5 | 3.5 | 2.5 | [ |
CoS nanoplates | 30 | -14.0 | 2.9 | 0.5 | 2.9 | [ | |
MoS2 nanosheets | 60 | -44.4 | 3.0 | 0.4 | 3.0 | [ | |
MoS2 nanosheets | 60 | -38.4 | 2.4 | 4.1 | 2.4 | [ | |
MoS2 nanosheets | 60 | -47.8 | 2.2 | 5.2 | 1.9 | [ | |
3D metal sulfides MA materials | flower-like CuS | 20 | -17.4 | 1.9 | 3.6 | 1.9 | [ |
flower-shaped MoS2 | 30 | -39.2 | 2.4 | 7.6 | 3.0 | [ | |
flower-like CuS | 5 | -102 | 3.5 | 4-18 | 2-5 | [ | |
hollow Co1-xS microspheres | 3 | -46.1 | 2.5 | 5.6 | 2.5 | [ | |
NixCo3-xS4 hollow spheres | 50 | -23.7 | 1.4 | 3.8 | 1.3 | [ | |
Metal sulfides/ dielectrics composites | CFs/Co9S8 | 15 | -46.8 | 4.8 | 5.4 | 2.0 | [ |
CFs@MXene@MoS2 | 20 | -61.5 | 2.1 | 7.6 | 2.1 | [ | |
MoS2/CNTs | 30 | -47.9 | 3.8 | 5.6 | 2.4 | [ | |
CoS2/CNTs | 50 | -65.0 | 1.6 | 6.2 | 1.6 | [ | |
MoS2/U-CNTs | 30 | -38.3 | 3.5 | 5.4 | 2.5 | [ | |
SnS/GO | 45 | -41.2 | 3.2 | 3.7 | - | [ | |
EG/MoS2 nanosheets | 7 | -52.3 | 15.1 | 4.1 | 1.6 | [ | |
WS2/rGO | 40 | -41.5 | 2.7 | 3.5 | 1.7 | [ | |
FeS2@carbon | 55 | -45.0 | 1.5 | 15.4 | 1.2-5 | [ | |
Fe7S8/C | 65 | -68.9 | 1.3 | 4.6 | 1.5 | [ | |
Cu9S5/C | 45 | -62.3 | 1.3 | 4.7 | 1.3 | [ | |
CC@NPC/CoS2 | 30 | -59.6 | 2.8 | 9.2 | 2.5-2.8 | [ | |
Co9S8/C/Ti3C2Tx | 33 | -50.1 | 2.5 | 4.2 | 2.5 | [ | |
CoS@Ti3C2Tx | 40 | -59.2 | 2.0 | 4.2 | 2.0 | [ | |
CuS/Ti3C2Tx | 35 | -45.3 | 3.5 | 5.2 | 2.0 | [ | |
MoS2/Co3O4 | 40 | -43.6 | 4.0 | 4.8 | 2.0 | [ | |
WS2/NiO | 40 | -53.3 | 4.3 | 4.9 | 2.2 | [ | |
CuS@ZnO | 40 | -40.5 | 1.5 | 4.1 | 1.5 | [ | |
ZnO/MoS2 | 30 | -35.8 | 2.5 | 10.2 | 2.5 | [ | |
CuS/Ag2S | 20 | -47.2 | 2.9 | 4.4 | 2.9 | [ | |
MoS2/FeS2 | 50 | -60.2 | 3.0 | 6.5 | 2.0 | [ | |
CuS@CoS2 nanoboxes | 20 | -58.6 | 2.5 | 8.2 | 2.2 | [ | |
NiS/Ni3S4 | 30 | -43.0 | 2.4 | 4.2 | 1.8 | [ | |
CoS@PPy | 15 | -29.2 | 4.0 | 3.0 | 4.0 | [ | |
PANI/CoS/C | 30 | -24..0 | 3.0 | 0.6 | 3.0 | [ | |
PPy@MoS2 nanotubes | 40 | -49.1 | 5.0 | 6.4 | 2.5 | [ | |
Metal sulfides/ magnets composites | Ni/MoS2 | 60 | -55.0 | 3.0 | 4.0 | 1.5 | [ |
MoS2@Ni | 20 | -22.0 | 2.0 | 2.8 | 2.0 | [ | |
Ni/ZnS | 70 | -25.8 | 2.7 | 4.7 | 2.7 | [ | |
Fe@MoS2 | 60 | -37.0 | 2.0 | 4.7 | 2.0 | [ | |
Fe-doped NiS2/NiS | 20 | -61.7 | 1.7 | 3.8 | 1.7 | [ | |
FeCo@MoS2 nanoflowers | 45 | -64.6 | 2.0 | 7.2 | 2.0 | [ | |
Cu9S5/Fe3O4 | 50 | -39.5 | 4.3 | 2-14 | 2.0-5.0 | [ | |
sandwich-like Fe3O4/Fe3S4 | 60 | -45.3 | 3.3 | 5.0 | 2.0 | [ | |
Fe3O4/MoS2 | 50 | -64.0. | 1.7 | 6.1 | 2.0 | [ | |
ZnFe2O4@MoS2 | 20 | -61.8 | 3.0 | 6.0 | 2.0 | [ | |
Co0.6Fe2.4O4@ MoS2 | 50 | -79.9 | 2.7 | 6.0 | 2.3 | [ | |
CoFe2O4@ 1T/2H-MoS2 | 40 | -68.5 | 1.8 | 4.6 | 1.6 | [ | |
Metal sulfides/ dielectrics/magnets composites | rGO/CoFe2O4/ ZnS | 50 | -43.2 | 1.8 | 5.5 | 2.0 | [ |
rGO@Ni-doped -MoS2 | 40 | -40.0 | 2.0 | 4.8 | 2 | [ | |
Co/C/Co9S8 | 25 | -21.5 | 4.0 | 8.2 | 2.2 | [ | |
Co/C/Co9S8 | 30 | -54.0 | 4.9 | - | - | [ | |
PANI@MoS2@Fe3O4 nanowires | 30 | -49.7 | 1.3 | 6.5 | 1.7 | [ |
Table 2 Comparison of MA performances of different kinds of metal sulfides based MA materials.
Classify | Sample | Loading content (wt%) | RLmin | EAB | Refs. | ||
---|---|---|---|---|---|---|---|
Value (dB) | Thickness (mm) | Value (GHz) | Thickness (mm) | ||||
1D metal sulfides MA materials | CoS nanorods | 5 | -43.0 | 4.3 | - | - | [ |
Sb2S3 nanorods | 75 | -65.9 | 3.8 | 9.5 | 3.8 | [ | |
porous NixSy | 30 | -35.6 | 2.7 | 14.5 | 2.0-5.0 | [ | |
NixCo3-xS4 nanoprisms | 50 | -13.5 | 2.0 | 5.6 | 2.0 | [ | |
Co9S8 nanotubes | 20 | -46.7 | 2.8 | 4.0 | 2.8 | [ | |
2D metal sulfides MA materials | WS2 nanosheets | 40 | -15.5 | 5.5 | 3.5 | 2.5 | [ |
CoS nanoplates | 30 | -14.0 | 2.9 | 0.5 | 2.9 | [ | |
MoS2 nanosheets | 60 | -44.4 | 3.0 | 0.4 | 3.0 | [ | |
MoS2 nanosheets | 60 | -38.4 | 2.4 | 4.1 | 2.4 | [ | |
MoS2 nanosheets | 60 | -47.8 | 2.2 | 5.2 | 1.9 | [ | |
3D metal sulfides MA materials | flower-like CuS | 20 | -17.4 | 1.9 | 3.6 | 1.9 | [ |
flower-shaped MoS2 | 30 | -39.2 | 2.4 | 7.6 | 3.0 | [ | |
flower-like CuS | 5 | -102 | 3.5 | 4-18 | 2-5 | [ | |
hollow Co1-xS microspheres | 3 | -46.1 | 2.5 | 5.6 | 2.5 | [ | |
NixCo3-xS4 hollow spheres | 50 | -23.7 | 1.4 | 3.8 | 1.3 | [ | |
Metal sulfides/ dielectrics composites | CFs/Co9S8 | 15 | -46.8 | 4.8 | 5.4 | 2.0 | [ |
CFs@MXene@MoS2 | 20 | -61.5 | 2.1 | 7.6 | 2.1 | [ | |
MoS2/CNTs | 30 | -47.9 | 3.8 | 5.6 | 2.4 | [ | |
CoS2/CNTs | 50 | -65.0 | 1.6 | 6.2 | 1.6 | [ | |
MoS2/U-CNTs | 30 | -38.3 | 3.5 | 5.4 | 2.5 | [ | |
SnS/GO | 45 | -41.2 | 3.2 | 3.7 | - | [ | |
EG/MoS2 nanosheets | 7 | -52.3 | 15.1 | 4.1 | 1.6 | [ | |
WS2/rGO | 40 | -41.5 | 2.7 | 3.5 | 1.7 | [ | |
FeS2@carbon | 55 | -45.0 | 1.5 | 15.4 | 1.2-5 | [ | |
Fe7S8/C | 65 | -68.9 | 1.3 | 4.6 | 1.5 | [ | |
Cu9S5/C | 45 | -62.3 | 1.3 | 4.7 | 1.3 | [ | |
CC@NPC/CoS2 | 30 | -59.6 | 2.8 | 9.2 | 2.5-2.8 | [ | |
Co9S8/C/Ti3C2Tx | 33 | -50.1 | 2.5 | 4.2 | 2.5 | [ | |
CoS@Ti3C2Tx | 40 | -59.2 | 2.0 | 4.2 | 2.0 | [ | |
CuS/Ti3C2Tx | 35 | -45.3 | 3.5 | 5.2 | 2.0 | [ | |
MoS2/Co3O4 | 40 | -43.6 | 4.0 | 4.8 | 2.0 | [ | |
WS2/NiO | 40 | -53.3 | 4.3 | 4.9 | 2.2 | [ | |
CuS@ZnO | 40 | -40.5 | 1.5 | 4.1 | 1.5 | [ | |
ZnO/MoS2 | 30 | -35.8 | 2.5 | 10.2 | 2.5 | [ | |
CuS/Ag2S | 20 | -47.2 | 2.9 | 4.4 | 2.9 | [ | |
MoS2/FeS2 | 50 | -60.2 | 3.0 | 6.5 | 2.0 | [ | |
CuS@CoS2 nanoboxes | 20 | -58.6 | 2.5 | 8.2 | 2.2 | [ | |
NiS/Ni3S4 | 30 | -43.0 | 2.4 | 4.2 | 1.8 | [ | |
CoS@PPy | 15 | -29.2 | 4.0 | 3.0 | 4.0 | [ | |
PANI/CoS/C | 30 | -24..0 | 3.0 | 0.6 | 3.0 | [ | |
PPy@MoS2 nanotubes | 40 | -49.1 | 5.0 | 6.4 | 2.5 | [ | |
Metal sulfides/ magnets composites | Ni/MoS2 | 60 | -55.0 | 3.0 | 4.0 | 1.5 | [ |
MoS2@Ni | 20 | -22.0 | 2.0 | 2.8 | 2.0 | [ | |
Ni/ZnS | 70 | -25.8 | 2.7 | 4.7 | 2.7 | [ | |
Fe@MoS2 | 60 | -37.0 | 2.0 | 4.7 | 2.0 | [ | |
Fe-doped NiS2/NiS | 20 | -61.7 | 1.7 | 3.8 | 1.7 | [ | |
FeCo@MoS2 nanoflowers | 45 | -64.6 | 2.0 | 7.2 | 2.0 | [ | |
Cu9S5/Fe3O4 | 50 | -39.5 | 4.3 | 2-14 | 2.0-5.0 | [ | |
sandwich-like Fe3O4/Fe3S4 | 60 | -45.3 | 3.3 | 5.0 | 2.0 | [ | |
Fe3O4/MoS2 | 50 | -64.0. | 1.7 | 6.1 | 2.0 | [ | |
ZnFe2O4@MoS2 | 20 | -61.8 | 3.0 | 6.0 | 2.0 | [ | |
Co0.6Fe2.4O4@ MoS2 | 50 | -79.9 | 2.7 | 6.0 | 2.3 | [ | |
CoFe2O4@ 1T/2H-MoS2 | 40 | -68.5 | 1.8 | 4.6 | 1.6 | [ | |
Metal sulfides/ dielectrics/magnets composites | rGO/CoFe2O4/ ZnS | 50 | -43.2 | 1.8 | 5.5 | 2.0 | [ |
rGO@Ni-doped -MoS2 | 40 | -40.0 | 2.0 | 4.8 | 2 | [ | |
Co/C/Co9S8 | 25 | -21.5 | 4.0 | 8.2 | 2.2 | [ | |
Co/C/Co9S8 | 30 | -54.0 | 4.9 | - | - | [ | |
PANI@MoS2@Fe3O4 nanowires | 30 | -49.7 | 1.3 | 6.5 | 1.7 | [ |
[1] |
N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik, D. Pan, Z. Guo, Z. Shi, Carbon N Y 176 (2021) 88-105.
DOI URL |
[2] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[3] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[4] |
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 30 (2020) 2000475.
DOI URL |
[5] |
C. Liang, K. Ruan, Y. Zhang, J. Gu, ACS Appl. Mater. Interfaces 12 (2020) 18023-18031.
DOI URL |
[6] |
C. Liang, P. Song, A. Ma, X. Shi, H. Gu, L. Wang, H. Qiu, J. Kong, J. Gu, Compos. Sci. Technol. 181 (2019) 107683.
DOI URL |
[7] |
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, W. Zhang, Small 15 (2019) 1902730.
DOI URL |
[8] |
L. Yang, X. Zhou, Z. Jia, H. Lv, Y. Zhu, J. Liu, Z. Yang, Carbon 167 (2020) 843-851.
DOI URL |
[9] |
J. Ge, S. Liu, L. Liu, Y. Cui, F. Meng, Y. Li, X. Zhang, F. Wang, J. Mater. Sci. Technol. 81 (2021) 190-202.
DOI URL |
[10] |
J. Liao, M. Ye, A. Han, J. Guo, C. Chen, Ceram. Int. 47 (2021) 8803-8811.
DOI URL |
[11] |
J. Liu, H. Liang, H. Wu, Compos. Part A 130 (2020) 105760.
DOI URL |
[12] |
S. Xie, Z. Ji, Y. Yang, G. Hou, J. Wang, Compos. Part B Eng. 106 (2016) 10-19.
DOI URL |
[13] |
Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, ACS Appl. Mater. Interfaces 9 (2017) 34243-34255.
DOI URL |
[14] | L. Liu, S. Zhang, F. Yan, C. Li, C. Zhu, X. Zhang, Y. Chen, ACS Appl. Mater. In-terfaces 10 (2018) 14108-14115. |
[15] |
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Adv. Sci. 6 (2019) 1801057.
DOI URL |
[16] |
J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B. Xu, H. Qiu, L. Chen, J. Gu, Compos. Part A 129 (2020) 105714.
DOI URL |
[17] |
W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia, Y. Zhou, Chem. Eng. J. 342 (2018) 364-371.
DOI URL |
[18] | D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu, X. Ba, S. Ullah, G. Zheng, M. Yan, M. Cao, Chin. Sci. Bull. 65 (2020) 138-146. |
[19] |
Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Compos. Part B 169 (2019) 221-228.
DOI URL |
[20] |
C. Ge, X. Zhang, J. Liu, F. Jin, J. Liu, H. Bi, Appl. Surf. Sci. 378 (2016) 49-56.
DOI URL |
[21] |
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Adv. Mater. 25 (2013) 6905-6910.
DOI URL |
[22] | T. Xia, Y. Cao, N. Oyler, J. Murowchick, L. Liu, X. Chen, ACS Appl. Mater. Inter-faces 7 (2015) 10407-10413. |
[23] |
H. Tang, L. Sacco, S. Vollebregt, H. Ye, X. Fan, G. Zhang, J. Mater. Chem. A 8 (2020) 24943-24976.
DOI URL |
[24] |
S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater. 10 (2020) 1902485.
DOI URL |
[25] |
S. Deng, T. Meng, B. Xu, F. Gao, Y. Ding, L. Yu, Y. Fan, ACS Catal. 6 (2016) 5807-5815.
DOI URL |
[26] |
J. Hu, C. Zhang, Y. Zhang, B. Yang, Q. Qi, M. Sun, F. Zi, M. Leung, B. Huang, Small 16 (2020) 2002212.
DOI URL |
[27] |
S. Chatterjee, A. Ray, A. Chakraborty, Sens. Actuator B Chem. 221 (2015) 1170-1181.
DOI URL |
[28] |
J. Chang, H. Lin, Mater. Lett. 132 (2014) 134-137.
DOI URL |
[29] |
N. Wu, X. Bai, D. Pan, B. Dong, R. Wei, N. Naik, R. Patil, Z. Guo, Adv. Mater. Interfaces 8 (2021) 2001710.
DOI URL |
[30] |
S. He, G. Wang, C. Lu, J. Liu, B. Wen, H. Liu, L. Guo, M. Cao, J. Mater. Chem. A 1 (2013) 4685-4692.
DOI URL |
[31] |
X. Zhang, S. Li, S. Wang, Z. Yin, J. Zhu, A. Guo, G. Wang, P. Yin, L. Guo, J. Phys. Chem. C 120 (2016) 22019-22027.
DOI URL |
[32] |
M. Lu, X. Wang, W. Cao, J. Yuan, M. Cao, Nanotechnology 27 (2016) 065702.
DOI URL |
[33] |
M. Zhang, Z. Song, H. Liu, A. Wang, S. Shao, J. Colloid Interface Sci. 584 (2021) 418-428.
DOI URL |
[34] |
Z. Feng, P. Yang, G. Wen, H. Li, Y. Liu, X. Zhao, Appl. Surf. Sci. 502 (2020) 144129.
DOI URL |
[35] |
X. Liu, X. Nie, R. Yu, H. Feng, Chem. Eng. J. 334 (2018) 153-161.
DOI URL |
[36] |
J. Lv, Y. Cheng, W. Liu, B. Quan, X. Liang, G. Ji, Y. Du, J. Mater. Chem. C 6 (2018) 1822-1828.
DOI URL |
[37] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, RSC Adv. 4 (2014) 61219-61225.
DOI URL |
[38] |
C. Zhang, B. Wang, J. Xiang, C. Su, C. Mu, F. Wen, Z. Liu, ACS Appl. Mater. Interfaces 9 (2017) 28868-28875.
DOI URL |
[39] | J. Qiao, X. Zhang, C. Liu, Z. Wang, W. Liu, F. Wang, J. Liu, Sci. China Mater. (2021) 35959-35968. |
[40] |
M. Ning, M. Lu, J. Li, Z. Chen, Y. Dou, C. Wang, F. Rehman, M. Cao, H. Jin, Nanoscale 7 (2015) 15734-15740.
DOI URL |
[41] |
Z. Man, P. Li, D. Zhou, Y. Wang, X. Liang, R. Zang, P. Li, Y. Zuo, Y. Lam, G. Wang, Nano Lett. 20 (2020) 3769-3777.
DOI URL |
[42] |
H. Wu, J. Liu, H. Liang, D. Zang, Chem. Eng. J. 393 (2020) 124743.
DOI URL |
[43] |
T. Hou, Z. Jia, S. He, Y. Su, X. Zhang, B. Xu, X. Liu, G. Wu, J. Colloid Interface Sci. 583 (2021) 321-330.
DOI URL |
[44] |
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Carbon N Y 145 (2019) 433-444.
DOI URL |
[45] |
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv, J. Yang, Adv. Funct. Mater. 30 (2020) 2002595.
DOI URL |
[46] |
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo, X. Liu, Carbon N Y 139 (2018) 1126-1135.
DOI URL |
[47] |
D. Xu, N. Wu, K. Le, F. Wang, Z. Wang, L. Wu, W. Liu, A. Ouyang, J. Liu, J. Mater. Chem. C 8 (2020) 2451-2459.
DOI URL |
[48] |
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia, S. Ma, Z. Yin, Y. Huang, Nano Micro Lett. 13 (2021) 56.
DOI URL |
[49] |
F. Zhao, Y. Shi, L. Pan, G. Yu, Acc. Chem. Res 50 (2017) 1734-1743.
DOI URL |
[50] |
L. Yang, H. Lv, M. Li, Y. Zhang, J. Liu, Z. Yang, Chem. Eng. J. 392 (2020) 123666.
DOI URL |
[51] |
B. Quan, W. Shi, S. Ong, X. Lu, P. Wang, G. Ji, Y. Guo, L. Zheng, Z. Xu, Adv. Funct. Mater. 29 (2019) 1901236.
DOI URL |
[52] |
C. Kittel, Phys. Rev. 73 (1948) 155-161.
DOI URL |
[53] |
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao, H. Yang, X. Fang, J. Yuan, Adv. Funct. Mater. 29 (2019) 1807398.
DOI URL |
[54] |
F. Meng, W. Wei, X. Chen, X. Xu, M. Jiang, L. Jun, Y. Wang, Z. Zhou, Phys. Chem. Chem. Phys. 18 (2016) 2510-2516.
DOI URL |
[55] |
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, ACS Sustain. Chem. Eng. 6 (2018) 12471-12480.
DOI URL |
[56] |
X. Wang, P. Zhou, G. Qiu, X. Zhang, L. Wang, Q. Zhang, M. Wang, Z. Liu, J. Alloy. Compd. 842 (2020) 155807.
DOI URL |
[57] |
Q. Jiang, H. Li, Z. Cao, H. Li, Q. Wang, Z. Jiang, Q. Kuang, Z. Xie, J. Alloy. Compd. 726 (2017) 1255-1261.
DOI URL |
[58] |
J. Shu, X. Yang, X. Zhang, X. Huang, M. Cao, L. Li, H. Yang, W. Cao, Carbon N Y 162 (2020) 157-171.
DOI URL |
[59] | C. Wang, J. Li, S. Guo, Compos. Part B 125 (2019) 105522. |
[60] |
T. Inui, K. Konishi, IEEE Trans. Magn. 35 (1999) 3148-3150.
DOI URL |
[61] |
E. Michielssen, J. Sajer, S. Ranjithan, R. Mittra, IEEE Trans. Microw. Theory Tech. 41 (1993) 1024-1031.
DOI URL |
[62] |
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, R. Zhang, Carbon N Y 176 (2021) 411-420.
DOI URL |
[63] |
S. Kim, S. Jo, K. Gueon, K. Choi, J. Kim, K. Churn, IEEE Trans. Magn. 27 (1991) 5462-5464.
DOI URL |
[64] |
T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4 (2016) 1727-1735.
DOI URL |
[65] | L. Meng, B. Wang, M. Ma, K. Lin, Mater. Today Chem. 1-2 (2016) 63-83. |
[66] |
C. Zhou, C. Wu, M. Yan, ACS Appl. Nano Mater. 1 (2018) 5179-5187.
DOI URL |
[67] |
L. Lyu, F. Wang, B. Li, X. Zhang, J. Qiao, Y. Yang, J. Liu, J. Colloid Interface Sci. 586 (2021) 613-620.
DOI URL |
[68] |
P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, ACS Appl. Mater. Interfaces 8 (2016) 5536-5546.
DOI URL |
[69] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, J. Mater. Chem. A 3 (2015) 10345-10352.
DOI URL |
[70] |
Y. Sun, D. Li, Y. Yang, L. Fan, S. Wu, P. Wang, Y. Song, RSC Adv. 7 (2017) 3907-3913.
DOI URL |
[71] |
M. He, Y. Zhou, T. Huang, S. Nie, Y. Wang, Z. Xu, Y. Huo, R. Xu, X. Chen, H. Peng, Compos. Sci. Technol. 200 (2020) 108403.
DOI URL |
[72] |
L. Xu, Z. Sun, Y. Zhu, Y. Han, M. Wu, Y. Ma, Y. Huang, H. Zhang, Y. Chen, Sci. China Mater. 63 (2020) 2435-2442.
DOI URL |
[73] |
Y. Yang, D. Xu, L. Lyu, F. Wang, Z. Wang, L. Wu, W. Liu, J. Liu, Compos. Part A 142 (2021) 106246.
DOI URL |
[74] |
W. Ruan, C. Mu, B. Wang, A. Nie, C. Zhang, X. Du, J. Xiang, F. Wen, Z. Liu, Nanotechnology 29 (2018) 405703.
DOI URL |
[75] |
C. Liu, B. Wang, C. Mu, K. Zhai, F. Wen, J. Xiang, A. Nie, Z. Liu, J. Magn. Magn. Mater. 502 (2020) 166432.
DOI URL |
[76] |
S. Zhou, Y. Huang, L. Xu, W. Zheng, Ceram. Int. 44 (2018) 21786-21793.
DOI URL |
[77] |
C. Wang, C. Mu, J. Xiang, B. Wang, C. Zhang, J. Song, F. Wen, Chin. J. Chem. 36 (2018) 157-161.
DOI URL |
[78] |
H. Qi, J. Huang, L. Cao, J. Wu, D. Wang, Ceram. Int. 38 (2012) 2195-2200.
DOI URL |
[79] |
S. Lu, Y. Wang, C. Wu, Y. Liu, X. Zhang, Sol. Energy 189 (2019) 398-403.
DOI URL |
[80] |
H. Wang, S. Lu, Y. Chen, L. Han, J. Zhou, X. Wu, W. Qin, J. Mater. Chem. A 3 (2015) 23677-23683.
DOI URL |
[81] |
S. Skrabalak, K. Suslick, J. Am. Chem. Soc. 127 (2005) 9990-9991.
PMID |
[82] |
M. Karuppannan, Y. Kim, D. Lee, Y. Sung, O. Kwon, J. Appl. Electrochem. 50 (2020) 1119-1128.
DOI URL |
[83] |
J. Qiao, D. Xu, L. Lv, X. Zhang, F. Wang, W. Liu, J. Liu, ACS Appl. Nano Mater. 1 (2018) 5297-5306.
DOI URL |
[84] |
J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang, L. Wu, W. Liu, F. Wang, J. Liu, Compos. Part B 200 (2020) 108343.
DOI URL |
[85] |
S. Dong, W. Tang, P. Hu, X. Zhao, X. Zhang, J. Han, P. Hu, ACS Sustain. Chem. Eng. 7 (2019) 11795-11805.
DOI URL |
[86] |
C. Zhou, C. Wu, H. Lv, M. Yan, J. Mater. Chem. C 7 (2019) 1696-1704.
DOI URL |
[87] |
Q. Wu, J. Wu, G. Wang, H. Zhang, H. Gao, W. Shui, Sci. Rep. 9 (2019) 10488.
DOI URL |
[88] | M. Lu, Q. Wu, X. Guan, W. Xu, H. Zhang, X. Di, G. Wang, S. Dong, Front. Chem. Chin. 6 (2018) 405. |
[89] |
Y. Cheng, Y. Guo, Z. Zhang, S. Dong, H. Wang, J. Alloy. Compd. 767 (2018) 323-329.
DOI URL |
[90] |
M. Lu, Q. Wu, X. Guan, W. Xu, H. Zhang, X. Di, G. Wang, S. Dong, Front. Chem. 6 (2018) 405.
DOI URL |
[91] |
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang, B. Wang, X. Yang, X. Bu, R. Wang, Langmuir 34 (2018) 15854-15863.
DOI URL |
[92] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[93] | D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng, S. Liang, H. Wang, M. Cao, Nano Micro Lett. 11 (2019) 38. |
[94] |
T. Huang, M. He, Y. Zhou, W. Pan, S. Li, B. Ding, S. Huang, Y. Tong, J. Mater. Sci. Mater. Electron. 28 (2017) 7622-7632.
DOI URL |
[95] |
S. Cheng, X. Xia, H. Liu, Y. Chen, J. Mater. Sci. Technol. 34 (2018) 1912-1918.
DOI URL |
[96] |
D. Zhang, Y. Jia, J. Cheng, S. Chen, J. Chai, X. Yang, Z. Wu, H. Wang, W. Zhang, Z. Zhao, C. Han, M. Cao, G. Zheng, J. Alloy. Compd. 758 (2018) 62-71.
DOI URL |
[97] |
W. Zhang, D. Jiang, X. Wang, B. Hao, Y. Liu, J. Liu, J. Phys. Chem. C 121 (2017) 4989-4998.
DOI URL |
[98] |
X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4 (2016) 6816-6821.
DOI URL |
[99] |
W. Li, C. Li, L. Lin, Y. Wang, J. Zhang, J. Mater. Sci. Technol. 35 (2019) 2658-2664.
DOI URL |
[100] |
J. Liu, M. Wang, L. Zhang, D. Zang, H. Liu, L. Francesca Liotta, H. Wu, J. Colloid Interface Sci. 591 (2021) 148-160.
DOI URL |
[101] |
X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, G. Wang, Adv. Funct. Mater. 28 (2018) 1800761.
DOI URL |
[102] |
Z. Jia, B. Wang, A. Feng, J. Liu, C. Zhang, M. Zhang, G. Wu, Ceram. Int. 45 (2019) 15854-15859.
DOI URL |
[103] |
S. He, C. Lu, G. Wang, J. Wang, H. Guo, L. Guo, Chempluschem 79 (2014) 569-576.
DOI URL |
[104] |
F. Tao, M. Green, A. Tran, Y. Zhang, Y. Yin, X. Chen, ACS Appl. Nano Mater. 2 (2019) 3836-3847.
DOI URL |
[105] |
H. Lv, Y. Guo, Y. Zhao, H. Zhang, B. Zhang, G. Ji, Z. Xu, Carbon 110 (2016) 130-137.
DOI URL |
[106] |
J. Wang, F. Wu, Z. Yang, T. Shah, A. Zhang, Q. Zhang, B. Zhang, Nanotechnology 31 (2020) 225605.
DOI URL |
[107] | J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Compos. Com-mun. 22 (2020) 100486. |
[108] | Y. Xu, D. Zhang, J. Cai, L. Yuan, W. Zhang, J. Mater. Sci. Technol. 28 (2012) 34-40. |
[109] |
T. Zhao, J. Hu, X. Zhao, X. Peng, W. Yang, C. Tang, T. Li, I. Ahmad, J. Alloy. Compd. 795 (2019) 327-335.
DOI URL |
[110] |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140 (2018) 2610-2618.
DOI URL |
[111] |
J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Compos. Part B 163 (2019) 67-76.
DOI URL |
[112] |
Z. Xie, D. Geng, X. Liu, S. Ma, Z. Zhang, J. Mater. Sci. Technol. 27 (2011) 607-614.
DOI URL |
[113] |
Y. Liu, Y. Wu, K. Li, J. Wang, C. Zhang, J. Ji, W. Wang, Appl. Surf. Sci. 486 (2019) 344-353.
DOI URL |
[114] |
Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Carbon N Y 174 (2021) 59-69.
DOI URL |
[115] |
P. Miao, K. Cheng, H. Li, J. Gu, K. Chen, S. Wang, D. Wang, T. Liu, B. Xu, J. Kong, ACS Appl. Mater. Interfaces 11 (2019) 17706-17713.
DOI URL |
[116] |
D. Xu, Y. Yang, K. Le, G. Wang, A. Ouyang, B. Li, W. Liu, L. Wu, Z. Wang, J. Liu, F. Wang, Chem. Eng. J. 417 (2021) 129350.
DOI URL |
[117] |
P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang, W. He, Carbon N Y 163 (2020) 348-359.
DOI URL |
[118] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon N Y 175 (2021) 271-280.
DOI URL |
[119] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[120] |
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 414 (2021) 128875.
DOI URL |
[121] |
H. Liu, L. Li, G. Cui, X. Wang, Z. Zhang, X. Lv, Nanomaterials 10 (2020) 1666.
DOI URL |
[122] |
G. Cui, L. Wang, L. Li, W. Xie, G. Gu, Prog. Nat. Sci. Mater. Int. 30 (2020) 343-351.
DOI URL |
[123] |
J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang, X. Ba, S. Ullah, G. Zheng, M. Yan, M. Cao, J. Alloy. Compd. 829 (2020) 154531.
DOI URL |
[124] |
B. Zhang, S. Lin, X. Li, Mater. Lett. 257 (2019) 126675.
DOI URL |
[125] |
J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, Chem. Eng. J. 380 (2020) 122625.
DOI URL |
[126] |
L. Xing, X. Li, Z. Wu, X. Yu, J. Liu, L. Wang, C. Cai, W. You, G. Chen, J. Ding, R. Che, Chem. Eng. J. 379 (2020) 122241.
DOI URL |
[127] |
C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song, J. Kong, H. Zhang, J. Gu, Compos. Part A 139 (2020) 106143.
DOI URL |
[128] |
C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, H. Gu, J. Kong, D. Cao, J. Gu, Nanoscale 11 (2019) 22590-22598.
DOI URL |
[129] |
H. Pang, Y. Duan, X. Dai, L. Huang, X. Yang, T. Zhang, X. Liu, J. Mater. Sci. Technol. 88 (2021) 203-214.
DOI URL |
[130] |
P. Liu, S. Gao, X. Liu, Y. Huang, W. He, Y. Li, Compos. Part B 192 (2020) 107992.
DOI URL |
[131] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano Micro Lett. 13 (2021) 91.
DOI URL |
[132] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A 128 (2020) 105670.
DOI URL |
[133] | L. Wang, P. Song, C. Lin, J. Kong, J. Gu, Research 2020 (2020) 4093732. |
[134] |
H. Liu, G. Cui, L. Li, Z. Zhang, X. Lv, X. Wang, Nanomaterials 10 (2020) 166.
DOI URL |
[135] |
L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao, S. Zhai, Z. Li, Compos. Part A 136 (2020) 105965.
DOI URL |
[136] |
X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, J. Mater. Chem. A 3 (2015) 5535-5546.
DOI URL |
[137] |
X. Yang, Y. Duan, Y. Zeng, H. Pang, G. Ma, X. Dai, J. Mater. Chem. C 8 (2020) 1583-1590.
DOI URL |
[138] |
Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, J. Mater. Sci. Technol. 77 (2021) 209-216.
DOI URL |
[139] |
B. Zhang, Y. Duan, H. Zhang, S. Huang, G. Ma, T. Wang, X. Dong, N. Jia, J. Mater. Sci. Technol. 68 (2021) 124-131.
DOI |
[140] |
Z. Zhang, Z. Wang, L. Heng, S. Wang, X. Chen, X. Fu, Y. Zou, Z. Tang, J. Phys. Soc. Jpn. 87 (2018) 054402.
DOI URL |
[141] |
Y. Liu, C. Ji, X. Su, X. He, J. Xu, Y. Li, J. Magn. Magn. Mater. 511 (2020) 166961.
DOI URL |
[142] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, RSC Adv. 4 (2014) 61219-61225.
DOI URL |
[143] |
J. Pan, X. Sun, T. Wang, Z. Zhu, Y. He, W. Xia, J. He, Appl. Surf. Sci. 457 (2018) 271-279.
DOI URL |
[144] |
N. Gao, W. Li, W. Wang, D. Liu, Y. Cui, L. Guo, G. Wang, ACS Appl. Mater. Interfaces 12 (2020) 14416-14424.
DOI URL |
[145] |
C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu, L. Lv, W. Liu, J. Liu, New J. Chem. 43 (2019) 16546-16554.
DOI URL |
[146] |
S. Liu, L. Li, S. Zheng, S. Qi, J. Mater. Sci. Mater. Electron. 29 (2018) 8978-8988.
DOI URL |
[147] |
Y. Wang, X. Di, Y. Fu, X. Wu, J. Cao, J. Colloid Interface Sci. 587 (2021) 561-573.
DOI URL |
[148] |
L. Long, E. Yang, X. Qi, R. Xie, Z. Bai, S. Qin, W. Zhong, J. Mater. Chem. C 7 (2019) 8975-8981.
DOI |
[149] |
L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, J. Am. Chem. Soc. 137 (2015) 2622-2627.
DOI URL |
[150] |
X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi, W. Wang, ACS Appl. Mater. Interfaces 12 (2020) 11252-11264.
DOI URL |
[151] |
N. Zhang, Y. Huang, M. Zong, X. Ding, S. Li, M. Wang, Chem. Eng. J. 308 (2017) 214-221.
DOI URL |
[152] |
W. Uddin, S. Rehman, M. Aslam, M. Wu, M. Zhu, Mater. Res. Bull. 130 (2020) 110943.
DOI URL |
[153] | L. Song, Y. Duan, J. Liu, H. Pang, J. Nano Res. 13 (2020) 95-104. |
[154] |
L. Huang, Y. Duan, J. Liu, Y. Zeng, G. Ma, H. Pang, S. Gao, W. Zhang, Adv. Opt. Mater. 8 (2020) 2000012.
DOI URL |
[155] | X. Liu, C. Hao, L. He, C. Yang, Y. Chen, C. Jiang, R. Yu, J. Nano Res. 11 (2018) 4169-4182. |
[156] |
W. Zhang, X. Zhang, Y. Zheng, C. Guo, M. Yang, Z. Li, H. Wu, H. Qiu, H. Yan, S. Qi, ACS Appl. Nano Mater. 1 (2018) 5865-5875.
DOI URL |
[1] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[2] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
[3] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[4] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[5] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[6] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[7] | Jingfa Li, Jian Zhou, Qihao Zhou, Xin Wang, Cong Guo, Min Li. Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni-B nanoflakes [J]. J. Mater. Sci. Technol., 2021, 82(0): 114-121. |
[8] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[9] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
[10] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[11] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
[12] | Huifang Pang, Yuping Duan, Xuhao Dai, Lingxi Huang, Xuan Yang, Tuo Zhang, Xiaoji Liu. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 203-214. |
[13] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
[14] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[15] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||