J. Mater. Sci. Technol. ›› 2022, Vol. 104: 236-243.DOI: 10.1016/j.jmst.2021.07.019
• Research Article • Previous Articles Next Articles
Yuan-Yuan Tana, Zhong-Jun Chenb, Ming-Yao Sua,c, Gan Dinga, Min-Qiang Jianga,c, Zhou-Can Xiea,c, Yu Gongb, Tao Wud, Zhong-Hua Wub, Hai-Ying Wanga,c, Lan-Hong Daia,c,e,*(
)
Received:2021-02-04
Revised:2021-07-06
Accepted:2021-07-07
Published:2022-03-30
Online:2021-09-12
Contact:
Lan-Hong Dai
About author:* E-mail address: lhdai@lnm.imech.ac.cn (L.-H. Dai).1 The two authors contributed equally to this paper.
Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures[J]. J. Mater. Sci. Technol., 2022, 104: 236-243.
Fig. 2. (111), (200), (220) and (311) Bragg peak position shifts of (a) CrCoNi MEA, (b) CrFeCoNi HEA, (c) CrMnFeCoNi HEA. The error bars are very small and enclosed in the scattering symbols.
Fig. 3. (a) Lattice parameter and (b) Uisoevolutions of CrCoNi MEA, CrFeCoNi HEA and CrMnFeCoNi HEA along with temperature decreasing. The values are obtained from the Rietveld refinements of individual XRD patterns.
Fig. 4. (a-c) Peak intensity and (d-f) FWHM value evolutions for (111), (200), (220) and (311) planes of (a) CrCoNi MEA, (b) CrFeCoNi HEA and (c) CrMnFeCoNi HEA with decreasing temperature.
Fig. 5. Magnetic properties of CrCoNi MEA, CrFeCoNi and CrMnFeCoNi HEAs. (a) M-T curves collected at a temperature range from 300 to 4 K, (b-d) M-H curves measured at low and cryogenic temperatures.
| [1] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
| [2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [3] | Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, E.J. Lavernia, Sci. Adv. 4 (2018) 1-9. |
| [4] |
J.P. Liu, J.X. Chen, T.W. Liu, C. Li, Y. Chen, L.H. Dai, Scr. Mater. 181 (2020) 19-24.
DOI URL |
| [5] |
X.F. Liu, Z.L. Tian, X.F. Zhang, H.H. Chen, T.W. Liu, Y. Chen, Y.J. Wang, L.H. Dai, Acta Mater. 186 (2020) 257-266.
DOI URL |
| [6] |
Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35 (2019) 334-340.
DOI |
| [7] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [8] |
L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, P.K. Liaw, Mater. Sci. Eng. A 784 (2020) 139323.
DOI URL |
| [9] |
S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019) 1807142.
DOI URL |
| [10] |
C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, P.K. Liaw, Adv. Mater. 32 (2020) 2004029.
DOI URL |
| [11] |
N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, E.P. George, AIP Adv 6 (2016) 125008.
DOI URL |
| [12] |
C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Mater. Sci. Eng. A 764 (2019) 138192.
DOI URL |
| [13] |
S.P. Wang, J. Xu, J. Mater. Sci. Technol. 35 (2019) 812-816.
DOI URL |
| [14] |
S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72.
DOI URL |
| [15] |
J. Wang, S. Wu, S. Fu, S. Liu, Z. Ren, M. Yan, S. Chen, S. Lan, H. Hahn, T. Feng, J. Mater. Sci. Technol. 77 (2021) 126-130.
DOI URL |
| [16] |
Z. Yang, S. Lu, Y. Tian, Z. Gu, H. Mao, J. Sun, L. Vitos, J. Mater. Sci. Technol. 80 (2021) 66-74.
DOI URL |
| [17] |
L.R. Owen, N.G. Jones, J. Mater. Res. 33 (2018) 2954-2969.
DOI URL |
| [18] |
L.R. Owen, H.J. Stone, H.Y. Playford, Acta Mater 170 (2019) 38-49.
DOI |
| [19] |
L.R. Owen, N.G. Jones, Scr. Mater. 187 (2020) 428-433.
DOI URL |
| [20] |
Y.Y. Tan, M.Y. Su, Z.C. Xie, Z.J. Chen, Y. Gong, L.R. Zheng, Z. Shi, G. Mo, Y. Li, L.W. Li, H.Y. Wang, L.H. Dai, Intermetallics 129 (2021) 107050.
DOI URL |
| [21] |
F. Zhang, Y. Tong, K. Jin, H. Bei, W.J. Weber, A. Huq, A. Lanzirotti, M. Newville, D.C. Pagan, J.Y.P. Ko, Y. Zhang, Mater. Res. Lett. 6 (2018) 450-455.
DOI URL |
| [22] | B. Fu, W.Y. Yang, L.F. Li, Z.Y. Zhao, Trans. Mater. Heat Treat. 38 (2017) 63-69 in Chinese. |
| [23] |
Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia, Acta Mater. 107 (2016) 59-71.
DOI URL |
| [24] |
N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, X. Hui, Mater. Sci. Eng. A 798 (2020) 140213.
DOI URL |
| [25] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [26] |
Q. Ding, X. Fu, D. Chen, H. Bei, B. Gludovatz, J. Li, Z. Zhang, E.P. George, Q. Yu, T. Zhu, R.O. Ritchie, Mater. Today 25 (2019) 21-27.
DOI URL |
| [27] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
| [28] |
Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Mater. Res. Lett. 6 (2018) 236-243.
DOI URL |
| [29] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 740-741 (2019) 336-341.
DOI URL |
| [30] |
Z. Pu, Z.C. Xie, R. Sarmah, Y. Chen, C. Lu, G. Ananthakrishna, L.H. Dai, Philos. Mag. 101 (2020) 154-178.
DOI URL |
| [31] |
M. Naeem, H. He, F. Zhang, H. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. Wu, F. Wang, Y. Wu, Z. Lu, Z. Zhang, C.T. Liu, X.L. Wang, Sci. Adv. 6 (2020) eaax4002.
DOI URL |
| [32] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712 (2018) 603-607.
DOI URL |
| [33] | M. Naeem, H. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, S. Lan, Z. Wu, Y. Wu, Z. Lu, C.T. Liu, X.-.L. Wang, Scr.Mater. 188 (2020) 21-25. |
| [34] |
F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater 61 (2013) 2628-2638.
DOI URL |
| [35] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. USA 115 (2018) 8919-8924.
DOI URL |
| [36] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
| [37] |
X. Sun, S. Lu, R. Xie, X. An, W. Li, T. Zhang, C. Liang, X. Ding, Y. Wang, H. Zhang, L. Vitos, Mater. Des. 199 (2021) 109396.
DOI URL |
| [38] |
S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater. 134 (2017) 334-345.
DOI URL |
| [39] |
H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Nat. Mater. 3 (2004)399-403.
PMID |
| [40] |
Z. Lyu, X. Fan, C. Lee, S.Y. Wang, R. Feng, P.K. Liaw, J. Mater. Res. 33 (2018) 2998-3010.
DOI URL |
| [41] |
P. Koželj, S. Vrtnik, M. Krnel, A. Jelen, D. Gačnik, M. Wencka, Z. Jagličić, A. Meden, F. Danoix, J. Ledieu, M. Feuerbacher, J. Dolinšek, J. Magn. Magn. Mater. 523 (2021) 167579.
DOI URL |
| [42] |
K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, H. Bei, Sci. Rep. 6 (2016) 20159.
DOI PMID |
| [43] |
O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, A. Dlouhý, Phys. Rev. B 96 (2017) 014437.
DOI URL |
| [44] |
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100 (2015) 90-97.
DOI URL |
| [45] | Z. Dong, S. Schönecker, W. Li, D. Chen, L. Vitos, Sci.Rep. 8 (2018)12211. |
| [46] |
S.M. Na, J.H. Yoo, P.K. Lambert, N.J. Jones, AIP Adv 8 (2018) 056412.
DOI URL |
| [47] |
Z. Dong, L. Vitos, Scr. Mater. 171 (2019) 78-82.
DOI URL |
| [48] |
D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Acta Mater 98 (2015) 288-296.
DOI URL |
| [49] |
S. Guo, C. Ng, Z. Wang, C.T. Liu, J. Alloys Compd. 583 (2014) 410-413.
DOI URL |
| [50] |
T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, Powder Diffr 29 (2014) S13-S18.
DOI URL |
| [51] |
D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, L. Vitos, Mater. Sci. Eng. A 759 (2019) 490-497.
DOI URL |
| [52] |
G. Laplanche, M. Schneider, F. Scholz, J. Frenzel, G. Eggeler, J. Schreuer, Scr. Mater. 177 (2020) 44-48.
DOI URL |
| [53] |
G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. 623 (2015) 348-353.
DOI URL |
| [54] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Jom 65 (2013) 1780-1789.
DOI URL |
| [55] |
R. Naorem, A. Gupta, S. Mantri, G. Sethi, K.V. ManiKrishna, R. Pala, K. Balani, A. Subramaniam Int. J. Mater. Res. 110 (2019) 393-405.
DOI URL |
| [56] | M. Calamiotou, D. Lampakis, N.D. Zhigadlo, S. Katrych, J. Karpinski, A. Fitch, P. Tsiaklagkanos, E. Liarokapis, Phys. C-Supercond. Its Appl. 527 (2016) 55-62. |
| [57] |
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122 (2017) 11-18.
DOI URL |
| [58] |
W. Feng, Y. Qi, S. Wang, Mater. Res. Express 5 (2018) 106511.
DOI URL |
| [59] |
S. Huang, W. Li, X. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, L. Vitos, Mater. Des. 103 (2016) 71-74.
DOI URL |
| [60] |
S. Huang, E. Holmström, O. Eriksson, L. Vitos, Intermetallics 95 (2018) 80-84.
DOI URL |
| [61] |
B. Zhang, Y. Duan, H. Zhang, S. Huang, G. Ma, T. Wang, X. Dong, N. Jia, J. Mater. Sci. Technol. 68 (2021) 124-131.
DOI |
| [62] |
Z. Dong, S. Huang, V. Ström, G. Chai, L.K. Varga, O. Eriksson, L. Vitos, J. Mater. Sci. Technol. 79 (2021) 15-20.
DOI URL |
| [63] |
P. Wei, Y. Fan, W. Zhang, X. Li, S. Zhu, J. Wang, C. Wang, T. Zhang, C. Chen, S. Guan, J. Magn. Magn. Mater. 519 (2021) 167432.
DOI URL |
| [64] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
| [65] |
S. Qiu, X.C. Zhang, J. Zhou, S. Cao, H. Yu, Q.M. Hu, Z. Sun, J. Alloys Compd. 846 (2020) 156321.
DOI URL |
| [66] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
| [67] | Z. Wu, F. Tian, Mater. Today Commun. 25 (2020) 101336. |
| [68] |
J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, L. Xie, J. Ren, Y. Zhang, Sci. China Mater. 62 (2019) 853-863.
DOI URL |
| [1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| [2] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [3] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [4] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
| [5] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
| [6] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
| [7] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
| [8] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
| [9] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
| [10] | Mehmet Cagirici, Pan Wang, Fern Lan Ng, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J]. J. Mater. Sci. Technol., 2021, 94(0): 53-66. |
| [11] | Qun Yang, Yang Hu, Jian-Min Zuo. The dislocation structure of slip bands in deformed high entropy alloy nanopillars [J]. J. Mater. Sci. Technol., 2021, 95(0): 136-144. |
| [12] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
| [13] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
| [14] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
| [15] | Minglu Li, Chaozhu Shu, Anjun Hu, Yu Yan, Miao He, Jianping Long. Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 92(0): 159-170. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
