J. Mater. Sci. Technol. ›› 2022, Vol. 116: 11-21.DOI: 10.1016/j.jmst.2021.11.032
• Research Article • Previous Articles Next Articles
Guohao Daia,c, Ruixiang Denga,*(), Xiao Youb,d, Tao Zhanga,*(
), Yun Yua, Lixin Songa,c,d
Received:
2021-08-25
Revised:
2021-11-02
Accepted:
2021-11-02
Published:
2022-01-26
Online:
2022-07-26
Contact:
Ruixiang Deng,Tao Zhang
About author:
tzhang@mail.sic.ac.cn (T. Zhang).Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases[J]. J. Mater. Sci. Technol., 2022, 116: 11-21.
Fig. 2. XRD patterns of the (a) HEO-1 at different sintering temperatures. (b) HEO-x (x = 1, 2, 3, 4, 5 and 6) sintered at 1050 °C. (c) HEO-1, HEO-4, and HEO-6 after 1000 °C post-annealing.
Fig. 3. SEM images of the (a-c) HEO-1, HEO-4, and HEO-6 without post-annealing, (d-f) HEO-1, HEO-4, and HEO-6 annealed at 700 °C for 12 h, (g-i) HEO-1, HEO-4, and HEO-6 after annealed at 1000 °C for 12 h. (j-p) Distribution of the Fe, Co, Ni, Cr, Mn, and O elements in HEO-4 characterized by EDS.
Fig. 4. (a) TEM image, (b) HRTEM image, and (c) selected-area electron diffraction (SAED) pattern of the composite HEO-4. (d) The corresponding Fast Fourier Transform (FFT) morphology of the (b) HRTEM image.
Fig. 7. (a-c) 3D plots of reflection loss for HEO-1, HEO-4, and HEO-6 at different thicknesses. (d) The reflection loss of HEO-1, HEO-4, and HEO-6 when thickness equals 10 mm.
Fig. 8. (a) The reflection loss of composite HEO-4 after annealing at 700 °C and 1000 °C for 10 h in the air. (b, c) Microwave absorption of the HEO-4 by in-situ measurement at 800 °C. (d) Measured thermal diffusivity of the high-entropy oxides.
Material | Temperature | Absorption bandwidth | Refs. |
---|---|---|---|
FeCoNiAlCr0.9 alloy | Room temperature | 9.3-13.58 GHz | [ |
HERSC-3 | Room temperature | 13.5-18 GHz | [ |
HE REB6/HE REBO3 | Room temperature | 13.6-17.5 GHz | [ |
CNTs/ZnO | in-situ 400 °C | 9.2-12.4 GHz | [ |
SiBCN | in-situ 600 °C | 8.9-12.4 GHz | [ |
SiC/Si3N4 | in-situ 800 °C | 9.78-11.69 GHz | [ |
HEO-4 | in-situ 800 °C | 9.6-12.4 GHz | This work |
Table 1. Comparison of microwave absorption with other similar absorbers.
Material | Temperature | Absorption bandwidth | Refs. |
---|---|---|---|
FeCoNiAlCr0.9 alloy | Room temperature | 9.3-13.58 GHz | [ |
HERSC-3 | Room temperature | 13.5-18 GHz | [ |
HE REB6/HE REBO3 | Room temperature | 13.6-17.5 GHz | [ |
CNTs/ZnO | in-situ 400 °C | 9.2-12.4 GHz | [ |
SiBCN | in-situ 600 °C | 8.9-12.4 GHz | [ |
SiC/Si3N4 | in-situ 800 °C | 9.78-11.69 GHz | [ |
HEO-4 | in-situ 800 °C | 9.6-12.4 GHz | This work |
Fig. 9. Frequency dependence of the (a) complex permittivity and (b) complex permeability. Hysteresis loops of HEO-1, HEO-4, and HEO-6 at 300 K (c) under the applied magnetic fields up to 10,000 Oe and (d) under the applied magnetic fields up to 1000 Oe.
Fig. 10. The input impedance of (a) HEO-1, (b) HEO-4, and (c) HEO-6 showed by the Smith chart (frequency range is 2-18 GHz and thickness is 10 mm). (d) Attenuation constant of the three composites. (e) Evaluation process and microwave absorbing mechanisms of the dual-phase coexistence HEO.
[1] |
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, Chem. Eng. J. 388 (2020) 124317.
DOI URL |
[2] |
X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59 (2014) 326-355.
DOI URL |
[3] |
B. Wei, J. Zhou, Z. Yao, A.A. Haidry, X. Guo, H. Lin, K. Qian, W. Chen, Ceram. Int. 46 (2020) 5788-5798.
DOI URL |
[4] | Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 31 (2020) 2000475. |
[5] |
W. Zhou, R.m. Yin, L. Long, H. Luo, W.d. Hu, Y.h. Ding, Y. Li, Ceram. Int. 44 (2018) 12301-12307.
DOI URL |
[6] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon N Y 48 (2010) 788-796.
DOI URL |
[7] |
W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, J. Eur. Ceram. Soc. 36 (2016) 36 81-36 89.
DOI URL |
[8] |
J.P. Chen, H. Jia, Z. Liu, Q.Q. Kong, Z.H. Hou, L.J. Xie, G.H. Sun, S.C. Zhang, C.M. Chen, Carbon N Y 164 (2020) 59-68.
DOI URL |
[9] |
Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang, P. Xiao, Y. Zhou, Y. Chen, Carbon N Y 105 (2016) 438-447.
DOI URL |
[10] |
M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan, H. Cao, R. Che, J. Mater. Chem. C 2 (2014) 7275-7283.
DOI URL |
[11] |
S. Dong, X. Zhang, X. Li, J. Chen, P. Hu, J. Han, Chem. Eng. J. 392 (2020) 123817.
DOI URL |
[12] |
Y. Ma, J. Huang, X. Liu, F. Bu, L. Wang, Q. Xie, D.-. L. Peng, Chem. Eng. J. 327 (2017) 678-685.
DOI URL |
[13] |
H. Lv, G. Ji, H. Zhang, Y. Du, RSC Adv. 5 (2015) 76836-76843.
DOI URL |
[14] |
L. Wang, B. Wen, H.B. Yang, Y. Qiu, N.R. He, Compos. Part A: Appl. Sci. Manuf. 135 (2020) 105958.
DOI URL |
[15] |
C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang, Y. Xu, B. Shen, Z. Wang, J. Mater. Chem. A 2 (2014) 16397-16402.
DOI URL |
[16] |
J. Wu, Z. Ye, W. Liu, Z. Liu, J. Chen, Ceram. Int. 43 (2017) 13146-13153.
DOI URL |
[17] |
Y. Wang, X. Di, X. Gao, X. Wu, P. Wang, J. Alloys. Compd. 843 (2020) 156031.
DOI URL |
[18] |
Y. Wang, X. Di, X. Wu, X. Li, J. Alloys Compd. 846 (2020) 156215.
DOI URL |
[19] | M.J. Liu, Y.H. Liu, H.C. Guo, B. Zhang, L.C. Ren, A. Bashir, S.L. Bai, Y.Y. Ge, Com- pos. Part A: Appl. Sci. Manuf. 146 (2021) 106411. |
[20] |
Z. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C. Huang, C. Wang, H. Han, Y. Li, Chem. Eng. J. 391 (2020) 123571.
DOI URL |
[21] |
D.D. Min, W.C. Zhou, F. Luo, D.M. Zhu, J. Magn. Magn. Mater. 435 (2017) 26-32.
DOI URL |
[22] |
J. Li, F. Zhang, H. Lu, W. Guo, X. He, Y. Yuan, Carbon N Y 181 (2021) 358-369.
DOI URL |
[23] |
J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, J. Mater. Chem. C 6 (2018) 7128-7140.
DOI URL |
[24] |
Y. Lei, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, P. Liu, RSC Adv. 8 (2018) 29344-29355.
DOI URL |
[25] |
W. You, W. She, Z. Liu, H. Bi, R. Che, J. Mater. Chem. C 5 (2017) 6047-6053.
DOI URL |
[26] |
Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, J. Mater. Sci. Technol. 77 (2021) 209-216.
DOI URL |
[27] |
Z. Shen, J. Chen, B. Li, G. Li, Z. Zhang, X. Hou, J. Alloys Compd. 815 (2020) 152388.
DOI URL |
[28] |
B. Zhao, C. Ma, L. Liang, W. Guo, B. Fan, X. Guo, R. Zhang, Cryst. Eng. Commun. 19 (2017) 3640-3648.
DOI URL |
[29] |
D. Chuai, X.F. Liu, R.H. Yu, J.R. Ye, Y.Q. Shi, Comp. Part A: Appl. Sci. Manuf. 89 (2016) 33-39.
DOI URL |
[30] |
L. Chen, J. Zhao, L. Wang, F. Peng, H. Liu, J. Zhang, J. Gu, Z. Guo, Ceram. Int. 45 (2019) 11756-11764.
DOI URL |
[31] |
J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng R 74 (2013) 211-232.
DOI URL |
[32] |
J.H. Byeon, J.-.W. Kim, Thin Solid Films 520 (2011) 1048-1052.
DOI URL |
[33] |
X.L. Liu, J.M. Xue, F.Y. Ren, F. Ye, X.M. Fan, Y.S. Liu, L.F. Cheng, Ceram. Int. 46 (2020) 20742-20750.
DOI URL |
[34] |
H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z. Liu, Q. Shi, P. Xiao, Y. Yang, T. Zhang, Y. Chen, Carbon N Y 124 (2017) 506-514.
DOI URL |
[35] |
H. Chen, B. Zhao, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 47 (2020) 216-222.
DOI URL |
[36] |
C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, ACS Appl. Mater. Interfaces 10 (2018) 39307-39318.
DOI URL |
[37] |
C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5 (2020) 295-309.
DOI URL |
[38] |
R.Z. Zhang, M.J. Reece, J. Mater. Chem. A 7 (2019) 22148-22162.
DOI URL |
[39] |
J. Li, Q. Fang, P.K. Liaw, Adv. Eng. Mater. 23 (2020) 2001044.
DOI URL |
[40] | D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Stat. Sol. (RRL) - Rap. Res. Lett. 10 (2016) 328-333. |
[41] |
P.B. Meisenheimer, T.J. Kratofil, J.T. Heron, Sci. Rep. 7 (2017) 13344.
DOI PMID |
[42] |
R.Z. Zhang, F. Gucci, H. Zhu, K. Chen, M.J. Reece, Inorg. Chem. 57 (2018) 13027-13033.
DOI URL |
[43] | J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins, Adv. Mater. 30 (2018) e1805004. |
[44] |
F. Li, W. Bao, S. Sun, L. Zhou, J. Liu, F. Xu, G. Zhang, Scr. Mater. 176 (2020) 17-22.
DOI URL |
[45] |
A. Mao, F. Quan, H.Z. Xiang, Z.G. Zhang, K. Kuramoto, A.L. Xia, J. Mol. Struct. 1194 (2019) 11-18.
DOI URL |
[46] |
W. Zhang, B. Zhao, H. Xiang, F.-. Z. Dai, S. Wu, Y. Zhou, J. Adv. Ceram. 10 (2020) 62-77.
DOI URL |
[47] |
W. Zhang, B. Zhao, N. Ni, H. Xiang, F.-. Z. Dai, S. Wu, Y. Zhou, J. Mater. Sci. Technol. 87 (2021) 155-166.
DOI URL |
[48] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[49] |
M. Biesuz, L. Spiridigliozzi, G. Dell’agli, M. Bortolotti, V.M. Sglavo, J. Mater. Sci. 53 (2018) 8074-8085.
DOI URL |
[50] |
G. Wang, J. Qin, Y. Feng, B. Feng, S. Yang, Z. Wang, Y. Zhao, J. Wei, ACS Appl. Mater. Interfaces 12 (2020) 45155-45164.
DOI URL |
[51] |
S. Zhao, H. Wu, R. Yin, X. Wang, H. Zhong, Q. Fu, W. Wan, T. Cheng, Y. Shi, G. Cai, C. Jiang, F. Ren, J. Alloys. Compd. 868 (2021) 159108.
DOI URL |
[52] |
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kubel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun. 9 (2018) 3400.
DOI URL |
[53] |
Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Funct. Mater. 29 (2019) 1901783.
DOI URL |
[54] |
B. Liang, Y. Ai, Y. Wang, C. Liu, S. Ouyang, M. Liu, Materials (Basel) 13 (2020) 5798.
DOI URL |
[55] |
D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong, Z. Wang, S. Luo, Y. Liu, X. Qi, J. Alloys Compd. 844 (2020) 156158.
DOI URL |
[56] |
R. Ding, L. Qi, M. Jia, H. Wang, J. Power. Sources 251 (2014) 287-295.
DOI URL |
[57] |
M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41 (2009) 324-332.
DOI URL |
[58] |
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717-2730.
DOI URL |
[59] |
H. Zhang, L. Liu, X. Zhang, S. Zhang, F. Meng, J. Alloys. Compd. 788 (2019) 1103-1112.
DOI URL |
[60] |
R.X. Deng, B.B. Chen, H.G. Li, K. Zhang, T. Zhang, Y. Yu, L.X. Song, Appl. Surf. Sci. 488 (2019) 921-930.
DOI URL |
[61] | L. Kong, X. Yin, M. Han, L. Zhang, L. Cheng, Ceram. Int. 41 (2015) 4 906-4 915. |
[62] | X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4 (2016) 6 816-6 821. |
[63] |
Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, L. Zheng, ACS Appl. Mater. Interfaces 7 (2015) 13604-13611.
DOI URL |
[64] | Y. Zhou, B. Zhao, H. Chen, H. Xiang, F.-. Z. Dai, S. Wu, W. Xu, J. Mater. Sci. Tech- nol. 74 (2021) 105-118. |
[65] |
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao, R. Zhang, Y. Wang, C. Liu, ACS Appl. Mater. Interfaces 12 (2020) 2644-2654.
DOI URL |
[66] |
R.X. Deng, B.B. Chen, H.G. Li, Z. Li, T. Zhang, Y. Yu, L.X. Song, Appl. Surf. Sci. 569 (2021) 151053.
DOI URL |
[67] |
C.V. Tran, D.D. La, P.N. Thi Hoai, H.D. Ninh, P.N. Thi Hong, T.H.T. Vu, A.K. Nadda, X.C. Nguyen, D.D. Nguyen, H.H. Ngo, J. Hazard. Mater. 420 (2021) 126636.
DOI URL |
[68] | Y. Li, Y. Qing, W. Li, M. Zong, F. Luo, Adv. Compos. Hybr. Mater. 569 (2021) 151053. |
[69] |
J. Bao, X.D. Zhang, B. Fan, J.J. Zhang, M. Zhou, W.L. Yang, X. Hu, H. Wang, B.C. Pan, Y. Xie, Angew. Chem. Int. Ed 54 (2015) 7399-7404.
DOI URL |
[1] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[2] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[3] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[4] | A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 90-101. |
[5] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 10-18. |
[6] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[7] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[8] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[9] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[10] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[11] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
[12] | Yichen Wang, Buhao Zhang, Chengyu Zhang, Jie Yin, Michael J. Reece. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C [J]. J. Mater. Sci. Technol., 2022, 113(0): 40-47. |
[13] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[14] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[15] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||