J. Mater. Sci. Technol. ›› 2022, Vol. 115: 10-18.DOI: 10.1016/j.jmst.2021.11.024
• Research Article • Previous Articles Next Articles
Zijian Zhoua,b, Rui Zhanga,*(), Chuanyong Cuia,*(
), Yizhou Zhoua, Xiaofeng Suna, Jinglong Quc,d, Yu Guc,d, Jinhui Duc,d, Yi Tane
Received:
2021-06-07
Revised:
2021-11-01
Accepted:
2021-11-01
Published:
2022-07-10
Online:
2022-01-20
Contact:
Rui Zhang,Chuanyong Cui
About author:
chycui@imr.ac.cn (C. Cui).Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy[J]. J. Mater. Sci. Technol., 2022, 115: 10-18.
Fig. 1. Initial microstructure of DS Ni-Co-based superalloys used in this study: (a) optical image showing the columnar grains; (b) SEM-SE image showing the γ′ phase characteristics.
Ni | Co | Cr | Al + Ti | Mo | W | C + B + Zr |
---|---|---|---|---|---|---|
Bal. | 20-25 | 13-15 | 7.4-8.4 | 2.4-2.8 | 1.1-1.5 | 0.04-0.11 |
Table 1. Chemical composition of the Ni-Co-based alloy (wt.%).
Ni | Co | Cr | Al + Ti | Mo | W | C + B + Zr |
---|---|---|---|---|---|---|
Bal. | 20-25 | 13-15 | 7.4-8.4 | 2.4-2.8 | 1.1-1.5 | 0.04-0.11 |
Fig. 2. (a) Geometry and preparation process of hot compression samples used in this study; (b) hot compression test process along with photographs of the specimens before and after compression.
Fig. 3. (a) DTA curves of Ni-Co based superalloys used in this study, (b) temperature increment under various deformation directions at 1120 °C/1 s-1.
Fig. 5. (a) Statistical results of GOS distributions for acquiring the threshold value; (b-d) IPF color-coded maps and (e-g) GOS color-coded maps of the samples under various deformation directions: (b,e) 0°, (c,f) 45°, (d, g) 90° (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 8. Compression direction along the columnar grain: (a) TEM images of dense dislocations in the γ matrix; (b) microstructures of dense MTs and the corresponding diffraction pattern; (c) MTs with different extended directions; (d) MTs formed close to the edge of the LAGB.
Fig. 9. HRTEM images of (a) a dislocation reaction in the γ matrix; (b) the front end of the deformation twin; (c) detailed view containing the ITB and two twins, T1 and T2, on both sides.
Temperature | Alloy | G (GPa) | Average γSE (mJ/m2) |
---|---|---|---|
RT | U720Li [ | 85.9 | 35.9 ± 3.7 |
Studied | 89.8 | 24.6 ± 2.5 |
Table 2. Parameters used for calculating the stacking fault energy in the studied Ni-Co-based alloys and reference alloy U720Li [6].
Temperature | Alloy | G (GPa) | Average γSE (mJ/m2) |
---|---|---|---|
RT | U720Li [ | 85.9 | 35.9 ± 3.7 |
Studied | 89.8 | 24.6 ± 2.5 |
Fig. 11. Specimens with different deformation directions: (a) 45°, (b) 90°; (c,d) corresponding longitudinal sections along the slip traces of the 45° and 90° deformed specimens; (e) schematic of the deformation direction.
[1] |
C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, Metall. Mater. Trans. 40 (2009) 282-291.
DOI URL |
[2] |
T. Osada, Y.F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, H. Harada, Acta Mater. 61 (2013) 1820-1829.
DOI URL |
[3] |
A.M.S. Costa, J.P. Oliveira, V.F. Pereira, C.A. Nunes, A.J. Ramirez, A.P. Tschiptschin, J. Mater. Process. Technol. 262 (2018) 605-614.
DOI URL |
[4] |
Y.J. Xu, K. Du, C.Y. Cui, H.Q. Ye, Scr. Mater. 77 (2014) 71-74.
DOI URL |
[5] |
Y. Yuan, Y.F. Gu, C.Y. Cui, T. Osada, T. Yokokawa, H. Harada, Adv. Eng. Mater. 13 (2011) 296.
DOI URL |
[6] |
Y. Yuan, Y.F. Gu, C.Y. Cui, T. Osada, Z.H. Zhong, T. Tetsui, T. Yokokawa, H. Harada, J. Mater. Res. 26 (2011) 2833-2837.
DOI URL |
[7] |
D. Barba, E. Alabort, S. Pedrazzini, Acta Mater. 135 (2017) 314.
DOI URL |
[8] |
T.M. Smith, R.R. Unocic, H. Deutchman, M.J. Mills, Mater. High Temp. 33 (2016) 372-383.
DOI URL |
[9] |
S. Mahajan, G.Y. Chin, Acta Metall. 21 (1973) 1353-1363.
DOI URL |
[10] |
C. Haase, L.A. Barrales-Mora, Acta Mater. 150 (2018) 88-103.
DOI URL |
[11] | R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, Mater. Sci. Eng. 25 (2008) 4 83-4 84. |
[12] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
[13] |
S. Mahajan, Scr. Mater. 68 (2) (2013) 95-99.
DOI URL |
[14] |
I.J. Beyerlein, X. Zhang, A. Misra, Ann. Rev. Mater. Res. 44 (1) (2014) 329-363.
DOI URL |
[15] | D. Zhang, L. Jiang, B. Zheng, J.M. Schoenung, S. Mahajan, E.J. Lavernia, I.J. Bey-erlein, Ref. Modul. Mater. Sci. Mater. Eng.(2016) 1-22. |
[16] | Y.F. Gu, C.Y. Cui, Y. Yuan, Z.H. Zhong, Acta Metall. Sin. 51 (2015) 1191-1206. |
[17] |
C.Z. Zhu, R. Zhang, C.Y. Cui, Y.Z. Zhou, X.F. Sun, Metall. Mater. Trans. 52 (2021) 108-118.
DOI URL |
[18] |
P. Liu, R. Zhang, Y. Yuan, C.Y. Cui, X.F. Sun, J. Mater. Sci. Technol. 77 (2021) 66-81.
DOI URL |
[19] |
H.B. Zhang, K.F. Zhang, Z. Lu, C.H. Zhao, X.L. Yang, Mater. Sci. Eng. 604 (2014) 1-8.
DOI URL |
[20] |
C. Zhang, L.W. Zhang, W.F. Shen, Q.H. Xu, Y. Cui, J. Alloy. Compd. 728 (2017) 1269-1278.
DOI URL |
[21] | Q.Q. Ding, H.B. Bei, X. Yao, X.B. Zhao, X. Wei, J. Wang, Z. Zhang, J. Appl. Mater. Today 23 (2021) 101061. |
[22] |
B. Ramaswami, J. Appl. Phys. 36 (1965) 2569.
DOI URL |
[23] | Q. Ding, H. Bei, X. Wei, Y.F. Gao, Z. Zhang, Mater. Today 14 (2021) 100110. |
[24] |
A. Chiba, X.G. Li, M.S. Kim, Philos. Mag. A 79 (1999) 1533-1554.
DOI URL |
[25] |
E. Pu, W. Zheng, Z. Song, H. Feng, H. Dong, J. Alloy. Compd. 694 (2017) 617-631.
DOI URL |
[26] |
H. Jiang, J. Dong, M. Zhang, Z. Yao, Metall. Mater. Trans. A 47 (2016) 5071-5087.
DOI URL |
[27] |
Z.J. Zhou, R. Zhang, C.Y. Cui, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin. (Engl. Lett.) 34 (2021) 943-954.
DOI URL |
[28] |
Z.P. Wan, L.X. Hu, Y. Sun, T. Wang, Z. Li, J. Alloy. Compd. 769 (2018) 367-375.
DOI URL |
[29] |
M.A. Mostafaei, M. Kazeminezhad, Mater. Sci. Eng. A 535 (2012) 216-221.
DOI URL |
[30] |
R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform. 10 (2001) 710-717.
DOI URL |
[31] |
P.O. Guglielmi, M. Ziehmer, E.T. Lilleodden, Acta Mater. 150 (2018) 195-205.
DOI URL |
[32] |
Y. Cao, H. Di, J. Zhang, T. Ma, R. Misra, Mater. Sci. Eng. A 585 (2013) 71-85.
DOI URL |
[33] |
X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, J. Alloy. Compd. 693 (2017) 426-431.
DOI URL |
[34] |
H.B. Zhang, K.F. Zhang, H.P. Zhou, Z. Lu, C.H. Zhao, X.L. Yang, Mater. Des. 80 (2015) 51-62.
DOI URL |
[35] |
G. He, F. Liu, L. Huang, Z. Huang, L. Jiang, Mater. Sci. Eng. A 655 (2016) 408-424.
DOI URL |
[36] |
Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, L.Z. Zhou, J. Alloy. Compd. 795 (2019) 370-384.
DOI URL |
[37] | B.N. Du, Z.Y. Hu, J.L Wang, L.Y. Sheng, Bioact. Mater. 5 (2020) 219-227. |
[38] |
S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloy. Compd. 681 (2016) 28-42.
DOI URL |
[39] |
B.N. Du, Z.Y. Hu, L.Y. Sheng, J. Mater. Sci. Technol. 60 (2021) 44-55.
DOI |
[40] |
J.J. Moverare, S. Johansson, R.C. Reed, Acta Mater. 57 (2009) 2266-2276.
DOI URL |
[41] |
H. Xu, Z.J. Zhang, P. Zhang, C.Y. Cui, T. Jin, Z.F. Zhang, Scr. Mater. 136 (2017) 92-96.
DOI URL |
[42] |
A. Belyakov, K. Tsuzaki, H. Miura, T. Sakai, Acta Mater. 51 (3) (2003) 847-861.
DOI URL |
[43] |
Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li, W.D. Huang, Mater. Des. 186 (2020) 108359.
DOI URL |
[44] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207.
DOI URL |
[45] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[46] |
D.M. Knowles, Q.Z. Chen, Mater. Sci. Eng. 340 (2003) 88.
DOI URL |
[47] | C. Kienl, F.D. León-Cázares, C.M.F. Rae, Acta Mater. (2020) 1-11. |
[48] | J.P. Hirth, J. Lothe, Theory of Dislocation, McGraw-Hill, New York, 1968. |
[49] |
G. Chalant, L. Remy, Acta Metall. 28 (1980) 75-88.
DOI URL |
[50] | L.J. Rong, Y.Y. Li, H.M. Cheng, C.X. Shi, Adv. Cryog. Eng. Mater. 42 (1996) 299-306. |
[51] |
J. Wang, A. Misra, J.P. Hirth, Phys. Rev. B 83 (2011) 064106.
DOI URL |
[52] | X.H. An, M. Song, Y. Huang, X.Z. Liao, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Scr. Mater. 72-73 (2014) 35-38. |
[53] |
L. Liu, J. Wang, S.K. Gong, S.X. Mao, Phys. Rev. Lett. 106 (2011) 175504.
DOI URL |
[54] |
J. Wang, N. Li, A. Misra, Philos. Mag. 93 (2013) 315.
DOI URL |
[55] |
P.D.E. Aerts, R. Siems, S. Amelinckx, J. Appl. Phys. 33 (1962) 3078.
DOI URL |
[56] |
R. Zhang, D.J. Wang, S.Q. Liu, H.S. Ding, S.J. Yuan, Mater. Charact. 144 (2018) 424-430.
DOI URL |
[1] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[2] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[3] | Hyun Chung, Dae Woong Kim, Woo Jin Cho, Heung Nam Han, Yuji Ikeda, Shoji Ishibashi, Fritz Körmann, Seok Su Sohn. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 270-280. |
[4] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
[5] | Hyo Ju Bae, Kwang Kyu Ko, Muhammad Ishtiaq, Jung Gi Kim, Hyokyung Sung, Jae Bok Seol. On the stacking fault forming probability and stacking fault energy in carbon-doped 17 at% Mn steels via transmission electron microscopy and atom probe tomography [J]. J. Mater. Sci. Technol., 2022, 115(0): 177-188. |
[6] | J.C. Cheng, S.P. Zhao, D. Fan, H.W. Chai, S.J. Ye, C. Li, S.N. Luo, Y. Cai, J.Y. Huang. Multiple ballistic impacts on 2024-T4 aluminum alloy by spheres: Experiments and modelling [J]. J. Mater. Sci. Technol., 2021, 94(0): 164-174. |
[7] | Xi Li, Zhongtao Li, Zhenggang Wu, Shijun Zhao, Weidong Zhang, Hongbin Bei, Yanfei Gao. Strengthening in Al-, Mo-or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison [J]. J. Mater. Sci. Technol., 2021, 94(0): 264-274. |
[8] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[9] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[10] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[11] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[12] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[13] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
[14] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[15] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||