J. Mater. Sci. Technol. ›› 2021, Vol. 94: 164-174.DOI: 10.1016/j.jmst.2021.04.012
• Research Article • Previous Articles Next Articles
J.C. Chenga, S.P. Zhaob, D. Fanb, H.W. Chaib, S.J. Yea, C. Lia, S.N. Luoa, Y. Caib,*(), J.Y. Huanga,*(
)
Received:
2021-02-05
Revised:
2021-03-26
Accepted:
2021-04-03
Published:
2021-05-08
Online:
2021-05-08
Contact:
Y. Cai,J.Y. Huang
About author:
jyhuang_1989@163.com (J.Y. Huang).J.C. Cheng, S.P. Zhao, D. Fan, H.W. Chai, S.J. Ye, C. Li, S.N. Luo, Y. Cai, J.Y. Huang. Multiple ballistic impacts on 2024-T4 aluminum alloy by spheres: Experiments and modelling[J]. J. Mater. Sci. Technol., 2021, 94: 164-174.
Fig. 1. Microstructural characterizations on the as-received 2024Al-T4 alloy. (a)-(c) Inverse pole figure (IPF) maps. Inset of (b): kernel average misorientation (KAM) map. EBSD scan step size: 4.73 m. (d)-(f) Backscattered electron images. White areas refer to precipitates. RD: rolling direction; TD: transverse direction; ND: normal direction.
Fig. 2. (a) Schematic setup for ballistic impact experiments. 1: target chamber; 2: gun barrel; 3: aluminum sabot; 4: spherical projectile; 5: electromagnetic induction velocimeter; 6: steel block; 7: 2024Al-T4 alloy target; 8: target holder; 9: polycarbonate windows; 10: high-speed camera; 11: light. (b) Definition of experimental parameters. dp: projectile diameter; dc: crater diameter; Dc: crater depth; Vc: crater volume.
${{\rho }_{0}}$(g cm-3) | ν | E (GPa) | ${{\sigma }_{0}}$(GPa) | ${{E}_{\text{t}}}$(GPa) | $\beta $ | C (s-1) | P. |
---|---|---|---|---|---|---|---|
2.78 | 0.32 | 71 | 0.29 | 0.51 | 1 | 6.0×106 | 4.5 |
Table 1 Material parameters for FEM simulation.${{\rho }_{0}}$: initial density; ν: Poisson’s ratio; E: Young’s modulus; ${{\sigma }_{0}}$: static yield stress;${{E}_{\text{t}}}$: tangent modulus;$\beta $: strain hardening parameter; C and P: strain-rate related parameters.
${{\rho }_{0}}$(g cm-3) | ν | E (GPa) | ${{\sigma }_{0}}$(GPa) | ${{E}_{\text{t}}}$(GPa) | $\beta $ | C (s-1) | P. |
---|---|---|---|---|---|---|---|
2.78 | 0.32 | 71 | 0.29 | 0.51 | 1 | 6.0×106 | 4.5 |
Impact | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | |
1st | 391 | 51 | 393 | 51 | 399 | 52 | 395 | 52 | 393 | 51 |
2nd | - | - | 393 | 65 | 393 | 63 | 396 | 65 | 398 | 64 |
3rd | - | - | - | - | 391 | 61 | 392 | 68 | 396 | 66 |
4th | - | - | - | - | - | - | 398 | 65 | 398 | 65. |
5th | - | - | - | - | - | - | - | - | 393 | 67 |
Table 2 Impact velocity (${{v}_{i}}$) and rebound velocity (${{v}_{r}}$) of the projectile for different impacts, both in m s-1.
Impact | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | ${{v}_{i}}$ | ${{v}_{r}}$ | |
1st | 391 | 51 | 393 | 51 | 399 | 52 | 395 | 52 | 393 | 51 |
2nd | - | - | 393 | 65 | 393 | 63 | 396 | 65 | 398 | 64 |
3rd | - | - | - | - | 391 | 61 | 392 | 68 | 396 | 66 |
4th | - | - | - | - | - | - | 398 | 65 | 398 | 65. |
5th | - | - | - | - | - | - | - | - | 393 | 67 |
Fig. 5. (a) Optical images of the postmortem samples impacted along the ND for 1-5 times (samples 1-5). (b)-(c) 3D laser scanning reconstruction of the impact craters viewed from different perspectives.
Fig. 7. (a) Depth (Dc), diameter (dc), shape coefficient (Dc/dc) and (b) volume (Vc) of craters as a function of the number of impact. Symbols: experimental data; lines: fitting to data with a power function.
Fig. 8. Microhardness distributions along the two lines marked in Fig. 2b for samples 1, 3, and 5. Hv0.2 refers to the Vickers hardness under a load of 0.2 kg. Dashed lines: the as-received sample.
Fig. 9. EBSD characterizations of the postmortem samples. (a)-(d) IPF maps for samples 1 and 3. The centers of maps (a) and (b) lie on the line AB (Fig. 2b), and are 4 mm away from point A (crater bottom). The centers of maps (c) and (d) lie on the line CD (Fig. 2b), and are 4 mm and 1 mm away from point C (crater sidewall center), respectively. (e)-(h) KAM maps corresponding to maps (a)-(d). EBSD scan step size: 4.73 m.
Fig. 11. (a)-(d) EBSD characterizations of the impact-recovered samples. Unindexed areas and grain boundaries with misorientation greater than 10° are marked in black. EBSD scan step size: 0.5 m. (e)-(h) {110} and {111} pole figures corresponding to the regions indicated by white rectangles in (a)-(d). (i)-(l) Grain boundary orientation distribution corresponding to (a)-(d). Insets of (i)-(l) display the positions of EBSD characterizations (red dots) for (a)-(d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Snapshots of instantaneous (a) effective plastic strain ($\varepsilon _{\text{eff}}^{\text{p}}$) fields and (b) shear strain (${{\varepsilon }_{\text{s}}}$) fields of the 2024Al-T4 alloy targets after the 1st to 5th impact. The black dots in figure (b) mark locations for EBSD characterization in Fig. 11a-d.
[1] |
Q. Zhang, Y.M. Zhu, X. Gao, Y.X. Wu, C. Hutchinson, Nat. Commun. 11 (1) (2020) 1-8.
DOI URL |
[2] |
J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, Y.S. Shi, J. Mater. Sci. Technol. 35 (2) (2019) 270-284.
DOI URL |
[3] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[4] |
Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[5] |
X.C. Xu, D.X. Liu, X.H. Zhang, C.S. Liu, D. Liu, J. Mater. Sci. Technol. 40 (2020) 88-98.
DOI URL |
[6] | M.A. Meyers, John Wiley & Sons, 1994. |
[7] |
A.A. Tiamiyu, A.Y. Badmos, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 708 (2017) 492-502.
DOI URL |
[8] |
S.J. Perez-Bergquist, G.T. Gray III, E.K. Cerreta, C.P. Trujillo, A. Perez-Bergquist, Mater. Sci. Eng. A 528 (29-30) (2011) 8733-8741.
DOI URL |
[9] |
Z. Rosenberg, G. Luttwak, Y. Yeshurun, Y. Partom, J. Appl. Phys. 54 (5) (1983) 2147-2152.
DOI URL |
[10] |
Y.G. Wang, M.L. Qi, H.L. He, L.L. Wang, Mech. Mater. 69 (1) (2014) 270-279.
DOI URL |
[11] | T.T. He, Y. Xiong, Z.Q. Guo, L.F. Zhang, F.Z. Ren, A.A. Volinsky, J. Mater. Sci. Tech-nol. 27 (9) (2011) 793-796. |
[12] | X.Q. Wu, Q.Y. Yin, C.G. Huang, J. Appl. Phys. 118 (17) (2015) 173102. |
[13] |
L. Zhen, G.A. Li, J.S. Zhou, D.Z. Yang, Mater. Sci. Eng. A 391 (1-2) (2005) 354-366.
DOI URL |
[14] |
Y.C. Ye, P.J. Li, L.S. Novikov, V.S. Avilkina, L.J. He, Acta Mater. 58 (7) (2010) 2520-2526.
DOI URL |
[15] |
X.P. Liang, H.Z. Li, L. Huang, T. Hong, B. Ma, Y. Liu, T. Nonferr. Metal. Soc. 22 (6) (2012) 1270-1279.
DOI URL |
[16] |
K. Tanaka, M. Nishida, N. Takada, Int. J. Impact Eng. 33 (1-12) (2006) 788-798.
DOI URL |
[17] | Z.G. Zhang, S.G. Shen, H.C. Song, D.X. Zhang, J. Mater. Sci. Technol. 14 (3) (1998) 265-268. |
[18] |
Y. Itagaki, H. Tamura, Y. Watanabe, K. Taniyama, A. Takashima, Int. J. Impact Eng. 123 (2019) 38-47.
DOI URL |
[19] |
J.Z. Lai, X.J. Guo, Y.Y. Zhu, Int. J. Impact Eng. 84 (2015) 1-12.
DOI URL |
[20] |
J.T. Gomez, A. Shukla, Int. J. Impact Eng. 25 (10) (2001) 965-979.
DOI URL |
[21] |
L. Zhu, D. Faulkner, Mar. Struct. 9 (7) (1996) 697-720.
DOI URL |
[22] |
L. Zhu, K.L. Guo, Y.G. Li, T.X. Yu, Q.W. Zhou, Int. J. Impact Eng. 114 (2018) 123-132.
DOI URL |
[23] |
K.L. Guo, L. Zhu, Y.G. Li, T.X. Yu, A. Shenoi, Q.W. Zhou, Compos. Struct. 200 (2018) 298-305.
DOI URL |
[24] |
P.K. Jena, B. Mishra, K.S. Kumar, T.B. Bhat, Mater. Des. 31 (7) (2010) 3308-3316.
DOI URL |
[25] |
M.B. Karamı¸s, A.A. Cerit, F. Nair, Wear 261 (7-8) (2006) 738-745.
DOI URL |
[26] |
B.Q. Li, M.L. Sui, S.X. Mao, J. Mater. Sci. Technol. 27 (2) (2011) 97-100.
DOI URL |
[27] |
S. Xue, Z. Fan, Y. Chen, J. Li, H. Wang, X. Zhang, Acta Mater. 101 (2015) 62-70.
DOI URL |
[28] | F. Zhao, L. Wang, D. Fan, B.X. Bie, X.M. Zhou, T. Suo, Y.L. Li, M.W. Chen, C.L. Liu, M.L. Qi, et al., Phys. Rev. Lett. 116 (7) (2016) 075501. |
[29] |
M.A. Khan, Y. Wang, A. Malik, F. Nazeer, G. Yasin, W.Q. Khan, T. Ahmad, H. Zhang, Arch. Civ. Mech. Eng. 19 (2019) 1484-1496.
DOI |
[30] |
Y.L. Guo, Q. Luo, B. Liu, Q. Li, Scripta Mater. 178 (2020) 422-427.
DOI URL |
[31] | H.W. Chai, Z.L. Xie, X.H. Xiao, H.L. Xie, J.Y. Huang, S.N. Luo, Int. J. Plasticity (2020) 102730. |
[32] |
B.X. Bie, S. Chen, T. Sun, K. Fezzaa, J.Y. Huang, S.N. Luo, Carbon 172 (2021) 781-790.
DOI URL |
[33] | R.G. Buchheit, R.K. Boger, M.C. Carroll, R.M. Leard, C. Paglia, J.L. Searles, Jom 53 (7) (2001) 29-33. |
[34] |
J.C. Cheng, H.W. Chai, G.L. Fan, Z.Q. Li, H.L. Xie, Z.Q. Tan, B.X. Bie, J.Y. Huang, S.N. Luo, Carbon 170 (2020) 589-599.
DOI URL |
[35] |
C.W. Hirt, A.A. Amsden, J.L. Cook, J. Comput. Phys. 14 (3) (1974) 227-253.
DOI URL |
[36] | G.R. Cowper, P.S. Symonds, Brown Univ., 1957. |
[37] | R. Goncharov, V. Zuzov, in: IOP Conf. Ser.: Mater. Sci. Eng., 963, 2020, p.012007. |
[38] |
L.E. Murr, E.A. Trillo, A.A. Bujanda, N.E. Martinez, Acta Mater. 50 (1) (2002) 121-131.
DOI URL |
[39] | S.P. Marsh, LASL shock Hugoniot data, 5, Univ. of California Press, 1980. |
[40] | F. Xi, K. Jin, L.C. Cai, H.Y. Geng, Y. Tan, J. Li, J. Appl. Phys. 117 (18) (2015) 185901. |
[41] |
D. Koschny, E. Grün, Icarus 154 (2) (2001) 391-401.
DOI URL |
[42] | A. Suzuki, S. Hakura, T. Hamura, M. Hattori, R. Hayama, T. Ikeda, H. Kusuno, H. Kuwahara, Y. Muto, K. Nagaki, et al., J. Geophys. Res. Planet. 117 (E8) (2012). |
[43] | J.P. Ponthot, L. Adam, Mec. Comput. 23 (2004) 59-78. |
[44] |
D. Rittel, L. Zhang, S. Osovski, J. Mech. Phys. Solids 107 (2017) 96-114.
DOI URL |
[45] |
H.T. Li, W.D. Fei, D.Z. Yang, Mater. Sci. Eng. A 333 (1-2) (2002) 377-379.
DOI URL |
[46] | W.X. Cao, Y.F. Wang, P.Y. Zhou, X.B. Yang, K. Wang, B.J. Pang, R.Q. Chi, Z.Q. Su, Int. J. Mech. Sci. 163 (2019) 105097. |
[47] |
X.K. Ma, Z. Chen, D.L. Zhong, S.N. Luo, L. Xiao, W.J. Lu, S.L. Zhang, J. Mater. Sci. Technol. 75 (2021) 27-38.
DOI URL |
[48] |
B.X. Bie, J.Y. Huang, B. Su, L. Lu, D. Fan, T. Sun, K. Fezzaa, M.L. Qi, S.N. Luo, Mater. Sci. Eng. A 664 (2016) 86-93.
DOI URL |
[49] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[50] | J.Y. Liu, J.Q. Xiang, C. Li, L. Lu, Z.Y. Zhong, S.N. Luo, Mater. Sci. Technol. (2020) 1-6. |
[51] | N. Zolotorevsky, E. Ushanova, I. Brodova, A. Petrova, N. Ermakova, J. Alloy. Compd. 857 (2021) 158298. |
[52] |
L.E. Murr, A. Ayala, C.S. Niou, Mater. Sci. Eng. A 216 (1-2) (1996) 69-79.
DOI URL |
[53] |
D.K. Qi, M.X. Tang, L. Lu, F. Zhao, L. Wang, S.N. Luo, J. Mater. Sci. 54 (5) (2019) 4314-4324.
DOI |
[54] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[55] |
Y.P. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[56] | Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (40) (2016) 18072-18087. |
[57] | Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnes. Alloy. 7 (1) (2019) 58-71. |
[58] | S.B. Jin, K. Zhang, R. Bjørge, N.R. Tao, K. Marthinsen, K. Lu, Y.J. Li, Appl. Phys. Lett. 107 (9) (2015) 091901. |
[59] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (4) (2016) 2404-2415.
DOI URL |
[60] | X. Zhang, Z. Chen, Y. Liu, The material point method: A continuum-based par-ticle method for extreme loading cases, Academic Press, 2016. |
[61] | O.S. Lee, H. Choi, H. Kim, J. Mater. Sci. Technol. 25 (1) (2011) 143-148. |
[62] | J.T. Xing, Fluid-Solid interaction dynamics: Theory, variational principles, nu-merical methods, and applications, Academic Press, 2019. 174. |
[1] | Rui Liu, Li Liu, Wenliang Tian, Yu Cui, Fuhui Wang. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 233-240. |
[2] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[3] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[4] | Yu Zhou, Qunbo Fan, Xin Liu, Duoduo Wang, Xinjie Zhu, Kai Chen. Multi-scale crystal plasticity finite element simulations of the microstructural evolution and formation mechanism of adiabatic shear bands in dual-phase Ti20C alloy under complex dynamic loading [J]. J. Mater. Sci. Technol., 2020, 59(0): 138-148. |
[5] | Chaoyu Han, Shibo Wen, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging [J]. J. Mater. Sci. Technol., 2020, 49(0): 25-34. |
[6] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[7] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[8] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
[9] | C.C. Roach, Y.C. Lu. Finite element analysis of the effect of interlayer on interfacial stress transfer in layered graphene nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(6): 1147-1152. |
[10] | Bo-Yu Liu, Nan Yang, Jian Wang, Matthew Barnett, Yun-Chang Xin, Di Wu, Ren-Long Xin, Bin Li, R.Lakshmi Narayan, Jian-Feng Nie, Ju Li, Evan Ma, Zhi-Wei Shan. Insight from in situ microscopy into which precipitate morphology can enable high strength in magnesium alloys [J]. J. Mater. Sci. Technol., 2018, 34(7): 1061-1066. |
[11] | Yingjie Ma, Sabry S. Youssef, Xin Feng, Hao Wang, Sensen Huang, Jianke Qiu, Jiafeng Lei, Rui Yang. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34(11): 2107-2115. |
[12] | Jin Zhaoyang, Yin Kai, Yan Kai, Wu Defeng, Liu Juan, Cui Zhenshan. Finite element modelling on microstructure evolution during multi-pass hot compression for AZ31 alloys using incremental method [J]. J. Mater. Sci. Technol., 2017, 33(11): 1255-1262. |
[13] | Wang Yanxin,Wang Shuming,Ye Qing,Yan Qingzhi,Ge Changchun. A Simulation Study on the Thermal Shock Behavior of Tungsten Mock-Up under Steady-State Heat Loads [J]. J. Mater. Sci. Technol., 2016, 32(12): 1386-. |
[14] | B.Q. Li, M.L. Sui, S.X. Mao. Twinnability Predication for fcc Metals [J]. J Mater Sci Technol, 2011, 27(2): 97-100. |
[15] | Xiangwei Kong, Bin Li, Zhibo Jin, Wenran Geng. Broaching Performance of Superalloy GH4169 Based on FEM [J]. J Mater Sci Technol, 2011, 27(12): 1178-1184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||